首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
污水厌氧生化处理与微生物燃料电池的结合探讨   总被引:1,自引:0,他引:1  
文章阐述了厌氧生物处理法和微生物燃料电池的工作原理以及优缺点,从产能和净化的双重角度将两者进行创新性结合,并在此基础上,针对有细菌电池的产电速率和速度低的问题进行了初步研究,考虑了阴极板,即不同的电子接收金属对整个系统的产电效率的影响。  相似文献   

2.
微生物燃料电池具有原料广泛、反应条件温和、清洁高效等优点。简述了MFC的原理、分类,对微生物燃料电池(MFC)产电影响因素进行了阐述,分析了MFC技术的用途,最后归纳了MFC技术的研究发展方向。  相似文献   

3.
微生物燃料电池在污水处理方面的应用研究进展   总被引:1,自引:1,他引:0  
近年来微生物燃料电池技术在国外接连取得突破性研究成果, 并迅速成为新概念废水处理的热点.介绍了微生物燃料电池技术的原理和特点, 系统综述了该项技术的研究进展, 重点总结了在微生物、介体与电极材料研究等方面的最新研究进展, 分析了存在的问题, 在此基础上指出微生物燃料电池技术研究的重点突破方向.  相似文献   

4.
文章介绍了微生物燃料电池(MFC)的结构,对原有的通过质子交换膜连接的结构进行改良,并且对分体式微生物燃料电池的盐桥了进行研究,分析盐桥的孔径对整个微生物燃料电池体系产能和清洁2个方面的影响.实验结果证明了盐桥用于MFC降解污水是可行的,并且其截面积的增加对系统的产电和COD的降解均有促进作用.  相似文献   

5.
沉积型微生物燃料电池(SMFC)是借助于沉积物中具有电化学活性微生物的催化作用,氧化沉积物中有机物以获得电能的一种装置,它具有用于淡水水体的原位修复的潜力.以湖泊底泥为阳极底物,含磷模拟配水为阴极液,构建了SMFC系统,研究了其产电性能及其对水中总磷去除的影响.结果表明,构建的SMFC系统可成功产电,运行22 d后输出电压达到最大值0.28 V(外电阻为1 000Ω).稳定运行期间,底泥烧失量由4.42%降低至1.91%;底泥氧化还原电位显著提高,由初始的-254 m V上升至-183 m V;溶液p H由初始的6.02上升至7.34;水中总磷浓度由10 mg/L降低至0.13 mg/L,这可能与SMFC使底泥电位、p H升高有关.  相似文献   

6.
随着能源危机的严重,新能源的开发与探索成为了人们关注的热点。其中微生物燃料电池作为生物质能的一个重要代表也获得了广泛的关注。通过使用硫酸铁铵和硫酸亚铁铵制备的磁流体来吸附微生物,使得微生物与电极接触更好,将微生物聚集在电极表面增大微生物的密度,增大电极的产电性能。选用开路电位法来研究微生物燃料电池的产电性能,是在无电场干扰的纯自然条件下对电池的产电性能的检测和表征,使得微生物能正常的进行生理代谢而不会受到伤害。研究的微生物燃料电池的开路电位高达1.44V,而且在检测的100min内比较稳定。  相似文献   

7.
为了探明驯化方式对微生物燃料电池运行性能的影响,对比研究了两种不同的驯化方式。以焦化废水直接驯化和以乙酸钠、焦化废水梯度驯化下的微生物燃料电池对焦化废水的降解能力和产电能力。研究了MFC的产电性能以及COD的去除率。结果表明,MFC可以以焦化废水作为底物进行产电;并且直接驯化下的MFC的最大输出功率45.1 mW/m~2高于梯度驯化的42.9 mW/m~2;两种MFC的表观内阻差别不大,分别为直接驯化下814Ω、梯度驯化下811Ω。对COD的去除,直接驯化的MFC可以达到91%,梯度驯化也达到了83%,略低于直接驯化。由以上数据可以看出直接驯化的MFC优于梯度驯化的。  相似文献   

8.
采用以污泥+葡萄糖为有机底物,硫酸根离子为电子受体、碳毡吸附固定化硫酸盐还原菌为生物阴极、碳布为阳极的双室微生物燃料电池,处理模拟酸性重金属矿井废水.构建不同的外接电阻(分别为100Ω、1000Ω)MFC系统和开路常规生化处理对比,废水初始pH=4,Zn2+、Cu2+、Cd2+、Pb2+、总Fe初始质量浓度均为20mg/L.结果表明,MFC外接电阻100Ω时,对Zn2+、Cu2+、Cd2+、Pb2+、总Fe的去除率分别达到99.45%、99.68%、99.65%、98.34%、98.99%;COD、SO2-4的最大降解速率分别为83.4和23.9mg·L-1·d-1,比开路常规生化处理分别提高了15%和181%;同时pH有效提升至中性.表明了微生物燃料电池的对于传统生物法处理酸性矿井废水有预调节作用.  相似文献   

9.
单室直接微生物燃料电池性能影响因素分析   总被引:5,自引:0,他引:5  
利用构建的单室微生物燃料电池,进行了阴极板中铁离子浓度、阳极底物、底物浓度及阳极板面积对单室直接微生物燃料电池性能影响的研究.结果表明:在其它条件相同的情况下,随着阴极电极板中Fe3 含量的增加,电池负载输出电压随之提高;不同底物的阳极反应,随着产生的电子和质子数的提高,电量随之增大;输出电压亦随底物浓度的增加而提高,但底物葡萄糖的浓度饱和值为0.72g/L;增加阳极板数量加大阳极比表面积,更多的微生物吸附在阳极电极上传递电子,电池输出电压与阳极板数量不成倍数关系.此研究为单室微生物燃料电池的应用提供了理论依据.  相似文献   

10.
酸性矿井水因pH值低、重金属离子含量高,难以直接采用硫酸盐还原菌生化处理.试验构建了空气阴极微生物燃料电池系统来处理酸性矿井水,有效处理废水H+和重金属离子,同时还能产电.构建的空气阴极微生物燃料电池系统(污泥量40mL,硫酸盐还原菌30mL,阳极材料为碳布,室温)的最大功率密度达到82.24mW/m2,最大电压为332.2mV;硫酸根的最大去除率达到41.6,对Zn2+、Cu2+、Cd2+和Fe2+的去除率分别达到83.7%、77.4%、84.2%和66.8%,化学需氧量的最大去除率达到60.9%.分析认为,空气阴极微生物燃料电池有效处理废水H+,弱化了H2S的生物抑制作用,强化了硫酸盐还原菌还原产生的S2-与重金属离子生成硫化物,并经能谱分析加以验证.  相似文献   

11.
文章以硝酸盐溶液为阴极的电子受体,在阴极室中分别接种活性污泥混合菌和纯反硝化单菌株,构成生物阴极微生物燃料电池(microbial fuel cell,简称MFC)A-MFC和B-MFC。实验结果表明:在外接电阻为100Ω情况下,A-MFC和B-MFC最大输出电压分别为119.6mV和117.2mV,硝酸盐在B-MFC阴极室的平均反硝化速率为2.19mg/(L·d),比A-MFC中的平均反硝化速率1.86mg/(L·d)略高;扫描电镜观察到A-MFC和B-MFC的阴极碳布纤维丝表面形貌存在差异,A-MFC中碳布被孔状结构物覆盖,而B-MFC阴极碳布被片层状结构物所覆盖;同时发现A-MFC的阴极碳布循环伏安法CV曲线上均出现了明显的还原峰,表明A-MFC阴极碳布上的微生物进行了催化还原反应,而且阴极溶液均出现1对明显的氧化还原电对,说明阴极溶液中确实存在氧化还原介体进行微生物与电极间传递电子。  相似文献   

12.
采用单室空气阴极微生物燃料电池处理肠衣废水,考察了其产电特性及废水处理效果.结果表明,实验条件下,微生物燃料电池能够在降解肠衣废水的同时产电.污水稀释比为1∶1到4∶1时,微生物燃料电池的产电性能和水处理效果较为理想,其输出电压可稳定维持在0.2V左右,COD处理效率可达83%以上,氨氮处理效率高于97%且处理较为彻底,污水中主要有机污染物蛋白质的去除率均可达75%以上.这些结果证明了微生物燃料电池降解肠衣废水并同步产电的可行性.  相似文献   

13.
微生物燃料电池是一种新型能源,在处理污水的同时产生电能。然而目前微生物燃料电池产电效率低,无法进行大规模的工业生产,如何提高微生物燃料电池的产电效率已经成为国内外研究的热点。设计了由双室微生物燃料电池构建的电压串联及并联、生物量串联及并联共4组电池实验,对不同连接方式进行比较,燃料电池在不同连接方式下的产电效率以及对污水的处理能力均有所不同。同时也设计了升压电路,保证燃料电池的电压基本维持在680 mV左右。生物实验结果表明,电压串、并联及生物量串、并联都能使燃料电池的工作电压有不同程度的提高;升压,电压串、并联及生物量串、并联能不同程度地提高燃料电池对有机物的降解能力,其中生物量串、并联对提高有机物的降解能力最为显著。  相似文献   

14.
近年来,工业化的快速发展所带来的环境问题受到了广泛的关注.含酚废水作为造纸、制药、石油化工等工业生产的主要有机污染物废水,具有毒性大和生化降解难的特点,亟须开发一些能够对其进行高效降解的废水处理工艺.文章着重介绍了微生物燃料电池(MFC)的技术原理、处理含酚废水中的应用及影响其性能的几个因素,并指出了未来MFC技术的研究方向.  相似文献   

15.
采用原位聚合法合成了La0.7Sr0.3CoO3/PANI复合材料微生物燃料电池(MFC)阴极催化剂。通过X射线衍射(XRD)、红外光谱(FT-IR)和扫描电子显微镜(SEM)对所制备催化剂进行结构和微观形貌表征。采用循环伏安法(CV)和交流阻抗法(EIS)对复合材料进行电化学性能的分析。结果表明,聚苯胺(PANI)含量的差异导致催化剂的活性有较大区别,在磷酸盐缓冲溶液中含PANI质量分数为6%的La0.7Sr0.3CoO3/PANI催化剂表现出了良好的活性。将所制备催化剂应用于单室微生物燃料电池阴极,结果显示,PANI质量分数为6%的La0.7Sr0.3CoO3/PANI对应MFC的最大功率密度258.91mW/m2,相应开路电压达642.7mV。这表明La0.7Sr0.3CoO3/PANI催化剂具有显著的催化活性,为需求有效MFC阴极催化剂材料提供了新途径。  相似文献   

16.
以浮萍为生物质能原料,采用酸式热裂解进行预处理,考察了处理液在微生物燃料电池(MFC)中的产电性能.结果表明:浮萍热裂解最佳预处理条件为:反应温度160℃,反应时间80 min,草酸投加量3%(质量分数).该条件下每克浮萍的还原糖产量为0.272 g,浮萍固体消化率可达到55%.当采用稀释10倍的热裂解液时,MFC的最...  相似文献   

17.
有机废水的微生物燃料电池(MFC)处理与能量回收对于实现污染减排和节能具有重要意义.对2008—2021年该领域的文献进行了计量分析,从基础数据分析和热点主题词两个层面出发,探讨了该领域的研究动态.结果表明:2008—2021年共发表486篇文章,中国是发文量最高的国家,但篇均被引次数相对较低;按照主题词的演变可将该领域研究分为可行性研究、性能提升和应用转化阶段;目前该领域亟待解决的问题包括功率输出低、投入成本高、系统稳定性低等.研究结果为该领域的研究人员了解国际进展情况、把握未来研究的突破点、推动有机废水的高效处理与能源化利用提供了科学参考.  相似文献   

18.
The microbial fuel cell, which can convert the chemical energy of organic matter into electricity via the catalytic action of microorganisms, is a novel environmentally friendly technology for wastewater treatment and energy generation. The electrical energy generated by the microbial fuel cell can be used as an alternative to a traditional external power source required to extract copper via electrolytic treatment. A dual-chamber microbial fuel cell (DMFC) for the treatment of copper slag sulfuric acid leach liquor was constructed. The electrogenesis performance of the DMFC and its ability to extract copper from the copper slag leachate were investigated. The results demonstrated that the maximum voltage was 540 mV when the DMFC achieved steady-state operation. The removal rate of copper ions was greater than 80.0%, and the maximum value was 92.1%. Moreover, X-ray diffraction and scanning electron microscopy were used to characterize the cathodal products. The results showed that the product deposited onto the cathode was copper and that its morphology was similar to that of the electrolytic copper powder. The DMFC can generate electricity and recover copper from copper slag simultaneously.  相似文献   

19.
 微生物燃料电池(MFC)是一种具备污水处理和产电功能的生物电化学技术装量,在微生物催化下将有机能转化成电能。综述了MFC 电极材料的研究进展,评述了阳极材料及其功能的修饰、阴极催化剂对污水处理和MFC 产电性能的进展,指出MFC电极材料设计和研究是未来的发展重点。  相似文献   

20.
为了进一步提高微生物燃料电池的运行性能,提高硝酸盐降解率及改善电能输出情况,以城镇污水处理厂二沉池污泥为接种源,硝酸钠为电子受体运行典型单室空气阴极微生物燃料电池(MFC)。以1g/L无水乙酸钠、50 mmol/L磷酸盐缓冲液为模拟废水成功启动MFC,运行稳定后,通过碳源、碳氮比(C/N)、硝酸盐浓度、温度4个因素来优化MFC运行性能。实验结果表明:在温度为30℃、无水乙酸钠为碳源、C/N=5∶1、硝酸盐质量浓度为200mg/L时MFC运行性能最佳,硝酸盐去除率均可达到90%以上,最大电压可达到0.462V。最佳状态下经6个周期运行,MFC最高电压为0.62V,功率密度高达4.53 W/m2;交流阻抗分析最佳运行状态下MFC内阻为130Ω,扫描电镜观察到电极表面微生物种类及数量均明显增多。研究证明MFC可以作为含硝酸盐废水产能净化的有效技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号