首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single kinesin molecules studied with a molecular force clamp.   总被引:18,自引:0,他引:18  
K Visscher  M J Schnitzer  S M Block 《Nature》1999,400(6740):184-189
Kinesin is a two-headed, ATP-driven motor protein that moves processively along microtubules in discrete steps of 8 nm, probably by advancing each of its heads alternately in sequence. Molecular details of how the chemical energy stored in ATP is coupled to mechanical displacement remain obscure. To shed light on this question, a force clamp was constructed, based on a feedback-driven optical trap capable of maintaining constant loads on single kinesin motors. The instrument provides unprecedented resolution of molecular motion and permits mechanochemical studies under controlled external loads. Analysis of records of kinesin motion under variable ATP concentrations and loads revealed several new features. First, kinesin stepping appears to be tightly coupled to ATP hydrolysis over a wide range of forces, with a single hydrolysis per 8-nm mechanical advance. Second, the kinesin stall force depends on the ATP concentration. Third, increased loads reduce the maximum velocity as expected, but also raise the apparent Michaelis-Menten constant. The kinesin cycle therefore contains at least one load-dependent transition affecting the rate at which ATP molecules bind and subsequently commit to hydrolysis. It is likely that at least one other load-dependent rate exists, affecting turnover number. Together, these findings will necessitate revisions to our understanding of how kinesin motors function.  相似文献   

2.
H Sakakibara  H Kojima  Y Sakai  E Katayama  K Oiwa 《Nature》1999,400(6744):586-590
Axonemal dyneins are force-generating ATPases that produce movement of eukaryotic cilia and flagella. Several studies indicate that inner-arm dyneins mainly produce bending moments in flagella and that these motors have inherent oscillations in force and motility. Processive motors such as kinesins have high duty ratios of attached to total ATPase cycle (attached plus detached) times compared to sliding motors such as myosin. Here we provide evidence that subspecies-c, a single-headed axonemal inner-arm dynein, is processive but has a low duty ratio. Ultrastructurally it is similar to other dyneins, with a single globular head, long stem and a slender stalk that attaches to microtubules. In vitro studies of microtubules sliding over surfaces coated with subspecies-c at low densities (measured by single-molecule fluorescence) show that a single molecule is sufficient to move a microtubule more than 1 microm at 0.7 microm s(-1). When many motors interact the velocity is 5.1 microm s(-1), fitting a duty ratio of 0.14. Using optical trap nanometry, we show that beads carrying a single subspecies-c motor move processively along the microtubules in 8-nm steps but slip backwards under high loads. These results indicate that dynein subspecies-c functions in a very different way from conventional motor proteins, and has properties that could produce self-oscillation in vivo.  相似文献   

3.
Organelle transport along microtubules is believed to be mediated by organelle-associated force-generating molecules. Two classes of microtubule-based organelle motors have been identified: kinesin and cytoplasmic dynein. To correlate the mechanochemical basis of force generation with the in vivo behaviour of organelles, it is important to quantify the force needed to propel an organelle along microtubules and to determine the force generated by a single motor molecule. Measurements of force generation are possible under selected conditions in vitro, but are much more difficult using intact or reactivated cells. Here we combine a useful model system for the study of organelle transport, the giant amoeba Reticulomyxa, with a novel technique for the non-invasive manipulation of and force application to subcellular components, which is based on a gradient-force optical trap, also referred to as 'optical tweezers'. We demonstrate the feasibility of using controlled manipulation of actively translocating organelles to measure direct force. We have determined the force driving a single organelle along microtubules, allowing us to estimate the force generated by a single motor to be 2.6 x 10(-7) dynes.  相似文献   

4.
High-frequency nanometre-scale vibration in 'quiescent' flagellar axonemes   总被引:2,自引:0,他引:2  
S Kamimura  R Kamiya 《Nature》1989,340(6233):476-478
The movement of cilia and flagella is based on the interaction between dynein arms and microtubules coupled with ATP hydrolysis. Although it is established that dynein arms cause adjacent microtubules to slide, little is known about the elementary process underlying the force production. To look more closely at the mechano-chemical conversion mechanism, we recently developed an optical method for measuring a nanometre-scale displacement with a time-resolution better than 1 ms. We now report the detection of high frequency (approximately 300 Hz) vibration of sub-nanometre amplitude in non-beating flagellar axonemes. This vibration could reflect the movement of individual activated dynein arms.  相似文献   

5.
Four ATP-binding sites in the midregion of the beta heavy chain of dynein.   总被引:27,自引:0,他引:27  
K Ogawa 《Nature》1991,352(6336):643-645
The 'motor' proteins of eukaryotic cells contain specialized domains that hydrolyse ATP to produce force and movement along a cytoskeletal polymer (actin in the case of the myosin family; microtubules in the case of the kinesin family and dyneins). There are motor-protein superfamilies in which each member has a conserved force-generating domain joined to a different 'tail' which conveys specific attachment properties. The minus-end-directed microtubule motors, the dyneins, may also constitute a superfamily of force-generating proteins with distinct attachment domains. Axonemal outer-arm dynein from sea urchin spermatozoa is a multimeric protein consisting of two heavy chains (alpha and beta) with ATPase activity, three intermediate chains and several light chains. Here I report the sequence of cloned complementary DNA encoding the beta heavy chain of a dynein motor molecule. The predicted amino-acid sequence reveals four ATP-binding consensus sequences in the central domain. The dynein beta heavy chain is thought to associate transiently with a microtubule during ATP hydrolysis, but the ATP-dependent microtubule-binding sequence common to the kinesin superfamily is not found in the dynein beta heavy chain. These unique features distinguish the dynein beta heavy chain from other motor protein superfamilies and may be characteristic of the dynein superfamily.  相似文献   

6.
Cytoplasmic dynein is localized to kinetochores during mitosis   总被引:90,自引:0,他引:90  
Recent evidence suggests that the force for poleward movement of chromosomes during mitosis is generated at or close to the kinetochores. Chromosome movement depends on motion relative to microtubules, but the identities of the motors remain uncertain. One candidate for a mitotic motor is dynein, a large multimeric enzyme which can move along microtubules toward their slow growing end. Dyneins were originally found in axonemes of cilia and flagella where they power microtubule sliding. Recently, cytoplasmic dyneins have also been found, and specific antibodies have been raised against them. The cellular localization of dynein has previously been studied with several antibodies raised against flagellar dynein, but the relevance of these data to the distribution of cytoplasmic dynein is not known. Antibodies raised against cytoplasmic dyneins have shown localization of dynein antigens to the mitotic spindles in Caenorhabditis elegans embryos (Lye et al., personal communication) and punctate cytoplasmic structures in Dictyostelium amoebae. Using antibodies that recognize subunits of cytoplasmic dyneins, we show here that during mitosis, cytoplasmic dynein antigens concentrate near the kinetochores, centrosomes and spindle fibres of HeLa and PtK1 cells, whereas at interphase they are distributed throughout the cytoplasm. This is consistent with the hypothesis that cytoplasmic dynein is a mitotic motor.  相似文献   

7.
Dynein structure and power stroke   总被引:11,自引:0,他引:11  
Burgess SA  Walker ML  Sakakibara H  Knight PJ  Oiwa K 《Nature》2003,421(6924):715-718
Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c, an isoform from Chlamydomonas reinhardtii flagella, at the start and end of its power stroke. Both stem and stalk are flexible, and the stem connects to the head by means of a linker approximately 10 nm long that we propose lies across the head. With both ADP and vanadate bound, the stem and stalk emerge from the head 10 nm apart. However, without nucleotide they emerge much closer together owing to a change in linker orientation, and the coiled-coil stalk becomes stiffer. The net result is a shortening of the molecule coupled to an approximately 15-nm displacement of the tip of the stalk. These changes indicate a mechanism for the dynein power stroke.  相似文献   

8.
Localization of cytoplasmic dynein to mitotic spindles and kinetochores   总被引:98,自引:0,他引:98  
E R Steuer  L Wordeman  T A Schroer  M P Sheetz 《Nature》1990,345(6272):266-268
What is the origin of the forces generating chromosome and spindle movements in mitosis? Both microtubule dynamics and microtubule-dependent motors have been proposed as the source of these motor forces. Cytoplasmic dynein and kinesin are two soluble proteins that power membranous organelle movements on microtubules. Kinesin directs movement of organelles to the 'plus' end of microtubules, and is found at the mitotic spindle in sea urchin embryos, but not in mammalian cells. Cytoplasmic dynein translocates organelles to the 'minus' end of microtubules, and is composed of two heavy chains and several light chains. We report here that monoclonal antibodies to two of these subunits and to another polypeptide that associates with dynein localize the protein to the mitotic spindle and to the kinetochores of isolated chromosomes, suggesting that cytoplasmic dynein is important in powering movements of the spindle and chromosomes in dividing cells.  相似文献   

9.
Carter NJ  Cross RA 《Nature》2005,435(7040):308-312
Kinesin is a molecular walking machine that organizes cells by hauling packets of components directionally along microtubules. The physical mechanism that impels directional stepping is uncertain. We show here that, under very high backward loads, the intrinsic directional bias in kinesin stepping can be reversed such that the motor walks sustainedly backwards in a previously undescribed mode of ATP-dependent backward processivity. We find that both forward and backward 8-nm steps occur on the microsecond timescale and that both occur without mechanical substeps on this timescale. The data suggest an underlying mechanism in which, once ATP has bound to the microtubule-attached head, the other head undergoes a diffusional search for its next site, the outcome of which can be biased by an applied load.  相似文献   

10.
Smith DE  Tans SJ  Smith SB  Grimes S  Anderson DL  Bustamante C 《Nature》2001,413(6857):748-752
As part of the viral infection cycle, viruses must package their newly replicated genomes for delivery to other host cells. Bacteriophage straight phi29 packages its 6.6-microm long, double-stranded DNA into a 42 x 54 nm capsid by means of a portal complex that hydrolyses ATP. This process is remarkable because entropic, electrostatic and bending energies of the DNA must be overcome to package the DNA to near-crystalline density. Here we use optical tweezers to pull on single DNA molecules as they are packaged, thus demonstrating that the portal complex is a force-generating motor. This motor can work against loads of up to 57 pN on average, making it one of the strongest molecular motors reported to date. Movements of over 5 microm are observed, indicating high processivity. Pauses and slips also occur, particularly at higher forces. We establish the force-velocity relationship of the motor and find that the rate-limiting step of the motor's cycle is force dependent even at low loads. Notably, the packaging rate decreases as the prohead is filled, indicating that an internal force builds up to approximately 50 pN owing to DNA confinement. Our data suggest that this force may be available for initiating the ejection of the DNA from the capsid during infection.  相似文献   

11.
Switch-based mechanism of kinesin motors   总被引:15,自引:0,他引:15  
Kinesin motors are specialized enzymes that use hydrolysis of ATP to generate force and movement along their cellular tracks, the microtubules. Although numerous biochemical and biophysical studies have accumulated much data that link microtubule-assisted ATP hydrolysis to kinesin motion, the structural view of kinesin movement remains unclear. This study of the monomeric kinesin motor KIF1A combines X-ray crystallography and cryo-electron microscopy, and allows analysis of force-generating conformational changes at atomic resolution. The motor is revealed in its two functionally critical states-complexed with ADP and with a non-hydrolysable analogue of ATP. The conformational change observed between the ADP-bound and the ATP-like structures of the KIF1A catalytic core is modular, extends to all kinesins and is similar to the conformational change used by myosin motors and G proteins. Docking of the ADP-bound and ATP-like crystallographic models of KIF1A into the corresponding cryo-electron microscopy maps suggests a rationale for the plus-end directional bias associated with the kinesin catalytic core.  相似文献   

12.
Chromosomes interact through their kinetochores with microtubule plus ends and they are segregated to the spindle poles as the kinetochore microtubules shorten during anaphase A of mitosis. The molecular natures and identities of coupling proteins that allow microtubule depolymerization to pull chromosomes to poles during anaphase have long remained elusive. In budding yeast, the ten-protein Dam1 complex is a critical microtubule-binding component of the kinetochore that oligomerizes into a 50-nm ring around a microtubule in vitro. Here we show, with the use of a real-time, two-colour fluorescence microscopy assay, that the ring complex moves processively for several micrometres at the ends of depolymerizing microtubules without detaching from the lattice. Electron microscopic analysis of 'end-on views' revealed a 16-fold symmetry of the kinetochore rings. This out-of-register arrangement with respect to the 13-fold microtubule symmetry is consistent with a sliding mechanism based on an electrostatically coupled ring-microtubule interface. The Dam1 ring complex is a molecular device that can translate the force generated by microtubule depolymerization into movement along the lattice to facilitate chromosome segregation.  相似文献   

13.
Bead movement by single kinesin molecules studied with optical tweezers   总被引:37,自引:0,他引:37  
S M Block  L S Goldstein  B J Schnapp 《Nature》1990,348(6299):348-352
Kinesin, a mechanoenzyme that couples ATP hydrolysis to movement along microtubules, is thought to power vesicle transport and other forms of microtubule-based motility. Here, microscopic silica beads were precoated with carrier protein, exposed to low concentrations of kinesin, and individually manipulated with a single-beam gradient-force optical particle trap ('optical tweezers') directly onto microtubules. Optical tweezers greatly improved the efficiency of the bead assay, particularly at the lowest kinesin concentrations (corresponding to approximately 1 molecule per bead). Beads incubated with excess kinesin moved smoothly along a microtubule for many micrometres, but beads carrying from 0.17-3 kinesin molecules per bead, moved, on average, only about 1.4 microns and then spontaneously released from the microtubule. Application of the optical trap directly behind such moving beads often pulled them off the microtubule and back into the centre of the trap. This did not occur when a bead was bound by an AMP.PNP-induced rigor linkage, or when beads were propelled by several kinesin molecules. Our results are consistent with a model in which kinesin detaches briefly from the microtubule during a part of each mechanochemical cycle, rather than a model in which kinesin remains bound at all times.  相似文献   

14.
Myosin VI is an actin-based motor that moves backwards.   总被引:15,自引:0,他引:15  
Myosins and kinesins are molecular motors that hydrolyse ATP to track along actin filaments and microtubules, respectively. Although the kinesin family includes motors that move towards either the plus or minus ends of microtubules, all characterized myosin motors move towards the barbed (+) end of actin filaments. Crystal structures of myosin II (refs 3-6) have shown that small movements within the myosin motor core are transmitted through the 'converter domain' to a 'lever arm' consisting of a light-chain-binding helix and associated light chains. The lever arm further amplifies the motions of the converter domain into large directed movements. Here we report that myosin VI, an unconventional myosin, moves towards the pointed (-) end of actin. We visualized the myosin VI construct bound to actin using cryo-electron microscopy and image analysis, and found that an ADP-mediated conformational change in the domain distal to the motor, a structure likely to be the effective lever arm, is in the opposite direction to that observed for other myosins. Thus, it appears that myosin VI achieves reverse-direction movement by rotating its lever arm in the opposite direction to conventional myosin lever arm movement.  相似文献   

15.
Microtubules are highly dynamic protein polymers that form a crucial part of the cytoskeleton in all eukaryotic cells. Although microtubules are known to self-assemble from tubulin dimers, information on the assembly dynamics of microtubules has been limited, both in vitro and in vivo, to measurements of average growth and shrinkage rates over several thousands of tubulin subunits. As a result there is a lack of information on the sequence of molecular events that leads to the growth and shrinkage of microtubule ends. Here we use optical tweezers to observe the assembly dynamics of individual microtubules at molecular resolution. We find that microtubules can increase their overall length almost instantaneously by amounts exceeding the size of individual dimers (8 nm). When the microtubule-associated protein XMAP215 (ref. 6) is added, this effect is markedly enhanced and fast increases in length of about 40-60 nm are observed. These observations suggest that small tubulin oligomers are able to add directly to growing microtubules and that XMAP215 speeds up microtubule growth by facilitating the addition of long oligomers. The achievement of molecular resolution on the microtubule assembly process opens the way to direct studies of the molecular mechanism by which the many recently discovered microtubule end-binding proteins regulate microtubule dynamics in living cells.  相似文献   

16.
Okada Y  Higuchi H  Hirokawa N 《Nature》2003,424(6948):574-577
Conventional isoforms of the motor protein kinesin behave functionally not as 'single molecules' but as 'two molecules' paired. This dimeric structure poses a barrier to solving its mechanism. To overcome this problem, we used an unconventional kinesin KIF1A (refs 5, 6) as a model molecule. KIF1A moves processively as an independent monomer, and can also work synergistically as a functional dimer. Here we show, by measuring its movement with an optical trapping system, that a single ATP hydrolysis triggers a single stepping movement of a single KIF1A monomer. The step size is distributed stochastically around multiples of 8 nm with a gaussian-like envelope and a standard deviation of 15 nm. On average, the step is directional to the microtubule's plus-end against a load force of up to 0.15 pN. As the source for this directional movement, we show that KIF1A moves to the microtubule's plus-end by approximately 3 nm on average on binding to the microtubule, presumably by preferential binding to tubulin on the plus-end side. We propose a simple physical formulation to explain the movement of KIF1A.  相似文献   

17.
复合齿轮马达是综合内外齿轮马达和轮系传动理论为一体的一种新型执行元件,具有排量大、扭矩脉动小、径向液压力平衡、噪音小等优点。从结构上其可以认为是由多个内外齿轮马达组成,分析了理论瞬态输出扭矩脉动,测出瞬态扭矩脉动率小于0.4%,验证了理论分析的正确性,为今后的研发制造提供理论与实验依据。  相似文献   

18.
带有侧隙的齿轮故障振动   总被引:1,自引:0,他引:1  
对在非共振情况下齿轮侧隙和载荷的变化对齿轮振动频率的影响进行了研究。建立齿轮振动微分方程 ,用变步长 Runge - Kutta法求出了齿轮存在间隙时齿轮振动的时程响应的数值解 ,并用快速 Fourier变换 (FFT)方法求出时程响应的幅值谱 ,研究结果表明 :齿侧间隙的存在及变化对齿轮的振动故障频率成份有很大的影响 ,并且在齿侧间隙的值一定时 ,如果齿轮的工作转速和工作载荷发生改变 ,齿轮的振动故障频率成份也有改变。研究结果对齿轮的故障诊断和齿轮传动系统动态设计有重要的意义  相似文献   

19.
Cytoplasmic dynein is a microtubule-activated ATPase which produces force towards the minus ends of microtubules. It is thought to be responsible for retrograde axonal transport and other aspects of organelle motility and may have a role in the poleward movement of mitotic chromosomes. Cytoplasmic dynein is an oligomeric complex of two catalytic heavy chains and a number of accessory subunits. We now report the cloning and sequencing of a complementary DNA for one of these species, a cytoplasmic dynein-associated polypeptide of relative molecular mass 150,000 (Mr 150K). A full-length cDNA was found to contain an open reading frame of 4.0 kilobases, which is predicted to encode a polypeptide of Mr 145K. It has extensive homology with the product of the Drosophila gene Glued, which encodes a polypeptide of Mr 148K. The Glued mutation is dominant, with pleiotropic developmental defects in heterozygotes and an embryonic lethal phenotype in homozygotes. As dominant mutations may involve disruption of normal protein-protein interactions, the Glued mutation should provide insight into the mode of action of cytoplasmic dynein in vivo.  相似文献   

20.
S A Cohn  A L Ingold  J M Scholey 《Nature》1987,328(6126):160-163
Coupling between ATP hydrolysis and microtubule movement was demonstrated several years ago in flagellar axonemes and subsequent studies suggest that the relevant microtubule motor, dynein, uses ATP to drive microtubule sliding by a cross-bridge mechanism analogous to that of myosin in muscles. Kinesin, a microtubule-based motility protein which may participate in organelle transport and mitosis, binds microtubules in a nucleotide-sensitive manner, and requires hydrolysable nucleotides to translocate microtubules over a glass surface. Recently, neuronal kinesin was shown to possess microtubule-activated ATPase activity although coupling between ATP hydrolysis and motility was not demonstrated. Here we report that sea urchin egg kinesin, prepared either with or without a 5'-adenylyl imidodiphosphate(AMPPNP)-induced microtubule binding step, also possesses significant microtubule-activated ATPase activity when Mg-ATP is used as a substrate. This ATPase activity is inhibited in a dose-dependent manner by addition of Mg-free ATP, by chelation of Mg2+ with EDTA, by addition of Na3VO4, or by addition of AMPPNP with or without Mg2+. Addition of these same reagents also inhibits the microtubule-translocating activities of sea urchin egg kinesin in a dose-dependent manner, supporting the hypothesis that kinesin-driven motility is coupled to the microtubule-activated Mg2+-ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号