首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ramírez SR  Gravendeel B  Singer RB  Marshall CR  Pierce NE 《Nature》2007,448(7157):1042-1045
Since the time of Darwin, evolutionary biologists have been fascinated by the spectacular adaptations to insect pollination exhibited by orchids. However, despite being the most diverse plant family on Earth, the Orchidaceae lack a definitive fossil record and thus many aspects of their evolutionary history remain obscure. Here we report an exquisitely preserved orchid pollinarium (of Meliorchis caribea gen. et sp. nov.) attached to the mesoscutellum of an extinct stingless bee, Proplebeia dominicana, recovered from Miocene amber in the Dominican Republic, that is 15-20 million years (Myr) old. This discovery constitutes both the first unambiguous fossil of Orchidaceae and an unprecedented direct fossil observation of a plant-pollinator interaction. By applying cladistic methods to a morphological character matrix, we resolve the phylogenetic position of M. caribea within the extant subtribe Goodyerinae (subfamily Orchidoideae). We use the ages of other fossil monocots and M. caribea to calibrate a molecular phylogenetic tree of the Orchidaceae. Our results indicate that the most recent common ancestor of extant orchids lived in the Late Cretaceous (76-84 Myr ago), and also suggest that the dramatic radiation of orchids began shortly after the mass extinctions at the K/T boundary. These results further support the hypothesis of an ancient origin for Orchidaceae.  相似文献   

2.
A lamprey from the Devonian period of South Africa   总被引:2,自引:0,他引:2  
Gess RW  Coates MI  Rubidge BS 《Nature》2006,443(7114):981-984
Lampreys are the most scientifically accessible of the remaining jawless vertebrates, but their evolutionary history is obscure. In contrast to the rich fossil record of armoured jawless fishes, all of which date from the Devonian period and earlier, only two Palaeozoic lampreys have been recorded, both from the Carboniferous period. In addition to these, the recent report of an exquisitely preserved Lower Cretaceous example demonstrates that anatomically modern lampreys were present by the late Mesozoic era. Here we report a marine/estuarine fossil lamprey from the Famennian (Late Devonian) of South Africa, the identity of which is established easily because many of the key specializations of modern forms are already in place. These specializations include the first evidence of a large oral disc, the first direct evidence of circumoral teeth and a well preserved branchial basket. This small agnathan, Priscomyzon riniensis gen. et sp. nov., is not only more conventionally lamprey-like than other Palaeozoic examples, but is also some 35 million years older. This finding is evidence that agnathans close to modern lampreys had evolved before the end of the Devonian period. In this light, lampreys as a whole appear all the more remarkable: ancient specialists that have persisted as such and survived a subsequent 360 million years.  相似文献   

3.
Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous   总被引:8,自引:0,他引:8  
Friis EM  Pedersen KR  Crane PR 《Nature》2001,410(6826):357-360
Phylogenetic analyses have identified the water lilies (Nymphaeales: Cabombaceae and Nymphaeaceae), together with four other small groups of flowering plants (the 'ANITA clades': Amborellaceae, Illiciales, Trimeniaceae, Austrobaileyaceae), as the first diverging lineages from the main branch of the angiosperm phylogenetic tree, but evidence of these groups in the earliest phases of the angiosperm fossil record has remained elusive. Here we report the earliest unequivocal evidence, based on fossil floral structures and associated pollen, of fossil plants related to members of the ANITA clades. This extends the history of the water lilies (Nymphaeales) back to the Early Cretaceous (125-115 million years) and into the oldest fossil assemblages that contain unequivocal angiosperm stamens and carpels. This discovery adds to the growing congruence between results from molecular-based analyses of relationships among angiosperms and the palaeobotanical record. It is also consistent with previous observations that the flowers of early angiosperms were generally very small compared with those of their living relatives.  相似文献   

4.
主要后生动物门类化石在寒武纪初期的突然出现记录了生命史中一个从未有过的快速演化时期,这一事件被称为“寒武纪爆发(Cambrian explosion)”.多年来有关“寒武纪爆发”成因的各种猜测从未间断过.但是,将古生物化石记录看成是生物进化过程中种系形成的真实过程已遭到许多研究者的非议,这主要取决于以下二方面的证据:一是对早期后生动物系统发生关系的重新评估;二是来自于分子系统学和分子钟的研究.现在看来,“寒武纪爆发”事件的产生,一方面归因于化石体积的明显增加及其伴随的骨骼化过程,另一方面可能是其时的进化革新事件所导致.  相似文献   

5.
Chang MM  Zhang J  Miao D 《Nature》2006,441(7096):972-974
Widespread nowadays in freshwater and coastal seas of the cold and temporal zones, lampreys are a jawless vertebrate group that has been in existence for more than 300 million years but left a meagre fossil record. Only two fossil lamprey species, namely Mayomyzon pieckoensis and Hardistiella montanensis, have been recognized with certainty from North American Carboniferous marine deposits. Here we report a freshwater lamprey from the Early Cretaceous epoch (about 125 million years ago) of Inner Mongolia, China. The new taxon, Mesomyzon mengae, has a long snout, a well-developed sucking oral disk, a relatively long branchial apparatus showing branchial basket, seven gill pouches, gill arches and impressions of gill filaments, about 80 myomeres and several other characters that are previously unknown or ambiguous. Our finding not only indicates Mesomyzon's closer relationship to extant lampreys but also reveals the group's invasion into a freshwater environment no later than the Early Cretaceous. The new material furthers our understanding of ancient lampreys, bridges the gap between the Carboniferous ones and their recent relatives, and adds to our knowledge of the evolutionary history of lampreys.  相似文献   

6.
Scanlon JD  Lee MS 《Nature》2000,403(6768):416-420
The Madtsoiidae were medium sized to gigantic snakes with a fossil record extending from the mid-Cretaceous to the Pleistocene, and spanning Europe, Africa, Madagascar, South America and Australia. This widely distributed group survived for about 90 million years (70% of known ophidian history), and potentially provides important insights into the origin and early evolution of snakes. However, madtsoiids are known mostly from their vertebrae, and their skull morphology and phylogenetic affinities have been enigmatic. Here we report new Australian material of Wonambi, one of the last-surviving madtsoiids, that allows the first detailed assessment of madtsoiid cranial anatomy and relationships. Despite its recent age, which could have overlapped with human history in Australia, Wonambi is one of the most primitive snakes known--as basal as the Cretaceous forms Pachyrhachis and Dinilysia. None of these three primitive snake lineages shows features associated with burrowing, nor do any of the nearest lizard relatives of snakes (varanoids). These phylogenetic conclusions contradict the widely held 'subterranean' theory of snake origins, and instead imply that burrowing snakes (scolecophidians and anilioids) acquired their fossorial adaptations after the evolution of the snake body form and jaw apparatus in a large aquatic or (surface-active) terrestrial ancestor.  相似文献   

7.
P Pavlov  J I Svendsen  S Indrelid 《Nature》2001,413(6851):64-67
The transition from the Middle to the Upper Palaeolithic, approximately 40,000-35,000 radiocarbon years ago, marks a turning point in the history of human evolution in Europe. Many changes in the archaeological and fossil record at this time have been associated with the appearance of anatomically modern humans. Before this transition, the Neanderthals roamed the continent, but their remains have not been found in the northernmost part of Eurasia. It is generally believed that this vast region was not colonized by humans until the final stage of the last Ice Age some 13,000-14,000 years ago. Here we report the discovery of traces of human occupation nearly 40,000 years old at Mamontovaya Kurya, a Palaeolithic site situated in the European part of the Russian Arctic. At this site we have uncovered stone artefacts, animal bones and a mammoth tusk with human-made marks from strata covered by thick Quaternary deposits. This is the oldest documented evidence for human presence at this high latitude; it implies that either the Neanderthals expanded much further north than previously thought or that modern humans were present in the Arctic only a few thousand years after their first appearance in Europe.  相似文献   

8.
The rise of angiosperms during the Cretaceous period is often portrayed as coincident with a dramatic drop in the diversity and abundance of many seed-free vascular plant lineages, including ferns. This has led to the widespread belief that ferns, once a principal component of terrestrial ecosystems, succumbed to the ecological predominance of angiosperms and are mostly evolutionary holdovers from the late Palaeozoic/early Mesozoic era. The first appearance of many modern fern genera in the early Tertiary fossil record implies another evolutionary scenario; that is, that the majority of living ferns resulted from a more recent diversification. But a full understanding of trends in fern diversification and evolution using only palaeobotanical evidence is hindered by the poor taxonomic resolution of the fern fossil record in the Cretaceous. Here we report divergence time estimates for ferns and angiosperms based on molecular data, with constraints from a reassessment of the fossil record. We show that polypod ferns (> 80% of living fern species) diversified in the Cretaceous, after angiosperms, suggesting perhaps an ecological opportunistic response to the diversification of angiosperms, as angiosperms came to dominate terrestrial ecosystems.  相似文献   

9.
A fossil owl monkey from La Venta, Colombia   总被引:1,自引:0,他引:1  
T Setoguchi  A L Rosenberger 《Nature》1987,326(6114):692-694
Knowledge of the evolutionary history of living New World anthropoids is limited by a relatively poor fossil record. The discovery in 1986 of a new fossil monkey from the middle Miocene deposits of La Venta, Colombia, 12-15 million years ago (Myr BP), is the first example of a living New World monkey genus appearing in Tertiary rocks. Including anatomical evidence of the dentition and facial skull, it provides an unambiguous link between a Neogene fossil and the owl monkey, Aotus, the only modern crepuscular-nocturnal anthropoid primate. This new form brings to three the number of La Venta fossil monkeys which preserve excellent dentitions sharing extensive similarities with modern genera. All of these species are potentially ancestral to their extant relatives. The La Ventan Aotus is additional support for the idea that the modern platyrrhine radiation includes long-lived genera or generic lineages, some of which may be traceable to the early Miocene, 20 Myr BP.  相似文献   

10.
Tavaré S  Marshall CR  Will O  Soligo C  Martin RD 《Nature》2002,416(6882):726-729
Divergence times estimated from molecular data often considerably predate the earliest known fossil representatives of the groups studied. For the order Primates, molecular data calibrated with various external fossil dates uniformly suggest a mid-Cretaceous divergence from other placental mammals, some 90 million years (Myr) ago, whereas the oldest known fossil primates are from the basal Eocene epoch (54-55 Myr ago). The common ancestor of primates should be earlier than the oldest known fossils, but adequate quantification is needed to interpret possible discrepancies between molecular and palaeontological estimates. Here we present a new statistical method, based on an estimate of species preservation derived from a model of the diversification pattern, that suggests a Cretaceous last common ancestor of primates, approximately 81.5 Myr ago, close to the initial divergence time inferred from molecular data. It also suggests that no more than 7% of all primate species that have ever existed are known from fossils. The approach unites all the available palaeontological methods of timing evolutionary events: the fossil record, extant species and clade diversification models.  相似文献   

11.
Analysis of one million base pairs of Neanderthal DNA   总被引:1,自引:0,他引:1  
Neanderthals are the extinct hominid group most closely related to contemporary humans, so their genome offers a unique opportunity to identify genetic changes specific to anatomically fully modern humans. We have identified a 38,000-year-old Neanderthal fossil that is exceptionally free of contamination from modern human DNA. Direct high-throughput sequencing of a DNA extract from this fossil has thus far yielded over one million base pairs of hominoid nuclear DNA sequences. Comparison with the human and chimpanzee genomes reveals that modern human and Neanderthal DNA sequences diverged on average about 500,000 years ago. Existing technology and fossil resources are now sufficient to initiate a Neanderthal genome-sequencing effort.  相似文献   

12.
Apesteguía S  Zaher H 《Nature》2006,440(7087):1037-1040
It has commonly been thought that snakes underwent progressive loss of their limbs by gradual diminution of their use. However, recent developmental and palaeontological discoveries suggest a more complex scenario of limb reduction, still poorly documented in the fossil record. Here we report a fossil snake with a sacrum supporting a pelvic girdle and robust, functional legs outside the ribcage. The new fossil, from the Upper Cretaceous period of Patagonia, fills an important gap in the evolutionary progression towards limblessness because other known fossil snakes with developed hindlimbs, the marine Haasiophis, Pachyrhachis and Eupodophis, lack a sacral region. Phylogenetic analysis shows that the new fossil is the most primitive (basal) snake known and that all other limbed fossil snakes are closer to the more advanced macrostomatan snakes, a group including boas, pythons and colubroids. The new fossil retains several features associated with a subterranean or surface dwelling life that are also present in primitive extant snake lineages, supporting the hypothesis of a terrestrial rather than marine origin of snakes.  相似文献   

13.
The appearance of anatomically modern humans in Europe and the nature of the transition from the Middle to Upper Palaeolithic are matters of intense debate. Most researchers accept that before the arrival of anatomically modern humans, Neanderthals had adopted several 'transitional' technocomplexes. Two of these, the Uluzzian of southern Europe and the Chatelperronian of western Europe, are key to current interpretations regarding the timing of arrival of anatomically modern humans in the region and their potential interaction with Neanderthal populations. They are also central to current debates regarding the cognitive abilities of Neanderthals and the reasons behind their extinction. However, the actual fossil evidence associated with these assemblages is scant and fragmentary, and recent work has questioned the attribution of the Chatelperronian to Neanderthals on the basis of taphonomic mixing and lithic analysis. Here we reanalyse the deciduous molars from the Grotta del Cavallo (southern Italy), associated with the Uluzzian and originally classified as Neanderthal. Using two independent morphometric methods based on microtomographic data, we show that the Cavallo specimens can be attributed to anatomically modern humans. The secure context of the teeth provides crucial evidence that the makers of the Uluzzian technocomplex were therefore not Neanderthals. In addition, new chronometric data for the Uluzzian layers of Grotta del Cavallo obtained from associated shell beads and included within a Bayesian age model show that the teeth must date to ~45,000-43,000 calendar years before present. The Cavallo human remains are therefore the oldest known European anatomically modern humans, confirming a rapid dispersal of modern humans across the continent before the Aurignacian and the disappearance of Neanderthals.  相似文献   

14.
Vascular plants evolved in the Middle to Late Silurian period, about 420 million years ago. The fossil record indicates that these primitive plants had branched stems with sporangia but no leaves. Leaf-like lateral outgrowths subsequently evolved on at least two independent occasions. In extant plants, these events are represented by microphyllous leaves in lycophytes (clubmosses, spikemosses and quillworts) and megaphyllous leaves in euphyllophytes (ferns, gymnosperms and angiosperms). Our current understanding of how leaves develop is restricted to processes that operate during megaphyll formation. Because microphylls and megaphylls evolved independently, different mechanisms might be required for leaf formation. Here we show that this is not so. Gene expression data from a microphyllous lycophyte, phylogenetic analyses, and a cross-species complementation experiment all show that a common developmental mechanism can underpin both microphyll and megaphyll formation. We propose that this mechanism might have operated originally in the context of primitive plant apices to facilitate bifurcation. Recruitment of this pathway to form leaves occurred independently and in parallel in different plant lineages.  相似文献   

15.
Foote M  Sepkoski JJ 《Nature》1999,398(6726):415-417
Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.  相似文献   

16.
Gene transfer to the nucleus and the evolution of chloroplasts   总被引:61,自引:0,他引:61  
Photosynthetic eukaryotes, particularly unicellular forms, possess a fossil record that is either wrought with gaps or difficult to interpret, or both. Attempts to reconstruct their evolution have focused on plastid phylogeny, but were limited by the amount and type of phylogenetic information contained within single genes. Among the 210 different protein-coding genes contained in the completely sequenced chloroplast genomes from a glaucocystophyte, a rhodophyte, a diatom, a euglenophyte and five land plants, we have now identified the set of 45 common to each and to a cyanobacterial outgroup genome. Phylogenetic inference with an alignment of 11,039 amino-acid positions per genome indicates that this information is sufficient--but just rarely so--to identify the rooted nine-taxon topology. We mapped the process of gene loss from chloroplast genomes across the inferred tree and found that, surprisingly, independent parallel gene losses in multiple lineages outnumber phylogenetically unique losses by more that 4:1. We identified homologues of 44 different plastid-encoded proteins as functional nuclear genes of chloroplast origin, providing evidence for endosymbiotic gene transfer to the nucleus in plants.  相似文献   

17.
Ancestral echinoderms from the Chengjiang deposits of China   总被引:1,自引:0,他引:1  
Shu DG  Morris SC  Han J  Zhang ZF  Liu JN 《Nature》2004,430(6998):422-428
Deuterostomes are a remarkably diverse super-phylum, including not only the chordates (to which we belong) but groups as disparate as the echinoderms and the hemichordates. The phylogeny of deuterostomes is now achieving some degree of stability, especially on account of new molecular data, but this leaves as conjectural the appearance of extinct intermediate forms that would throw light on the sequence of evolutionary events leading to the extant groups. Such data can be supplied from the fossil record, notably those deposits with exceptional soft-part preservation. Excavations near Kunming in southwestern China have revealed a variety of remarkable early deuterostomes, including the vetulicolians and yunnanozoans. Here we describe a new group, the vetulocystids. They appear to have similarities not only to the vetulicolians but also to the homalozoans, a bizarre group of primitive echinoderms whose phylogenetic position has been highly controversial.  相似文献   

18.
Delayed biological recovery from extinctions throughout the fossil record   总被引:6,自引:0,他引:6  
Kirchner JW  Weil A 《Nature》2000,404(6774):177-180
How quickly does biodiversity rebound after extinctions? Palaeobiologists have examined the temporal, taxonomic and geographic patterns of recovery following individual mass extinctions in detail, but have not analysed recoveries from extinctions throughout the fossil record as a whole. Here, we measure how fast biodiversity rebounds after extinctions in general, rather than after individual mass extinctions, by calculating the cross-correlation between extinction and origination rates across the entire Phanerozoic marine fossil record. Our results show that extinction rates are not significantly correlated with contemporaneous origination rates, but instead are correlated with origination rates roughly 10 million years later. This lagged correlation persists when we remove the 'Big Five' major mass extinctions, indicating that recovery times following mass extinctions and background extinctions are similar. Our results suggest that there are intrinsic limits to how quickly global biodiversity can recover after extinction events, regardless of their magnitude. They also imply that today's anthropogenic extinctions will diminish biodiversity for millions of years to come.  相似文献   

19.
K C Beard  L Krishtalka  R K Stucky 《Nature》1991,349(6304):64-67
The phylogenetic relationships of living tarsiers and extinct omomyid primates are critical for deciphering the origin and relationships of primate higher taxa, particularly anthropoids. Three competing phylogenetic hypotheses are: (1) tarsiers are most closely related to early Cenozoic Omomyidae, particularly genera such as Necrolemur from the late Eocene of Europe; (2) tarsiers share a more recent common ancestry with anthropoids than they do with any known omomyid; (3) tarsiers and/or omomyids are most closely related to strepsirhines. The anatomy of four skulls of the early Eocene omomyid Shoshonius cooperi--the first cranial material recovered for this genus--strongly suggests that Shoshonius shares a more recent common ancestry with Tarsius than do either anthropoids or other Eocene omomyids for which cranial anatomy is known. If the primate suborder Haplorhini (anthropoids, omomyids, tarsiids) is monophyletic, the phylogenetic position of Shoshonius requires that anthropoids and Tarsius diverged by at least the early Eocene, some 15 million years before the first appearance of anthropoids in the fossil record.  相似文献   

20.
Hibbett DS  Gilbert LB  Donoghue MJ 《Nature》2000,407(6803):506-508
Mycorrhizae, the symbiotic associations of plant roots and fungal hyphae, are classic examples of mutualisms. In these ecologically important associations, the fungi derive photosynthetic sugars from their plant hosts, which in turn benefit from fungus-mediated uptake of mineral nutrients. Early views on the evolution of symbioses suggested that all long-term, intimate associations tend to evolve toward mutualism. Following this principle, it has been suggested that mycorrhizal symbioses are the stable derivatives of ancestral antagonistic interactions involving plant parasitic fungi. Alternatively, mutualisms have been interpreted as inherently unstable reciprocal parasitisms, which can be disrupted by conflicts of interest among the partners. To determine the number of origins of mycorrhizae, and to assess their evolutionary stability, it is necessary to understand the phylogenetic relationships of the taxa involved. Here we present a broad phylogenetic analysis of mycorrhizal and free-living homobasidiomycetes (mushroom-forming fungi). Our results indicate that mycorrhizal symbionts with diverse plant hosts have evolved repeatedly from saprotrophic precursors, but also that there have been multiple reversals to a free-living condition. These findings suggest that mycorrhizae are unstable, evolutionarily dynamic associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号