首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
利用溶胶凝胶法制备了Bi_(6-x)La_xFe_(1.4)Co_(0.6)Ti_3O_(18)(0≤x≤1)多晶薄膜样品,系统研究了不同La掺杂量对Bi_6Fe_(1.4)Co_(0.6)Ti_3O_(18)样品的结构、形貌及铁电性能的影响.通过X射线衍射仪分析表明此掺杂化合物形成了具有正交晶系的单相,在掺杂范围内没有观察到第二相出现. SEM表面形貌图可以看出,随着La掺杂量的变化使薄膜颗粒大小地改变,进而将影响材料的性能.铁电测试显示所有的样品都具有良好地电滞回线,显示出良好的铁电性能.因此一定量的稀土元素的掺杂可以较好地改进材料的铁电性能.  相似文献   

2.
氧化铪基薄膜与金属氧化物半导体(CMOS)工艺高度兼容,具有良好的可微缩性和保持性能,其铁电性的发现引起了科学家们的广泛关注.该文通过化学溶液法在铂(Pt)衬底上制备5 mol%和10 mol%的铈掺杂氧化铪基(Ce:HfO_2)薄膜,并在不同的退火温度条件下对薄膜进行处理.分别利用电滞回线,掠入射X射线衍射(GIXRD)对薄膜的铁电性能和结构进行了测试和表征.研究发现:5 mol%的铈掺杂氧化铪薄膜具有铁电性,铈掺杂在氧化铪中诱导了铁电正交相;10 mol%的铈掺杂氧化铪薄膜则表现出了反铁电性,最大剩余极化(P_r)为21.02μC/cm~2.实验结果表明,通过调控掺杂浓度,铈元素能诱导出氧化铪薄膜中的铁电相.  相似文献   

3.
最近,在氧化铪薄膜材料中掺杂适量元素发现了铁电性,因为氧化铪薄膜材料与传统的钙钛矿结构铁电材料相比具有可微缩性化、较大的矫顽电场、与CMOS后端工艺高度兼容等优势,从而引起了广泛的关注.该文对应用于铁电场效应晶体管(FeFET)的存储介质Hf_(0.5)Zr_(0.5)O_2(HZO)基铁电薄膜的制备进行了研究.采用原子层沉积法(ALD)制备HZO基铁电薄膜,研究了不同厚度(9 nm、19 nm、29 nm)、不同顶电极(TaN、Pt),以及不同退火温度(450~750℃)对HZO铁电薄膜的铁电性能的影响.结果表明,选用TaN作为上电极,退火温度为550℃时,19 nm厚氧化铪铁电薄膜表现出更加优异的铁电性能.同时,表征了HZO铁电薄膜的保持和疲劳性能,以及HZO铁电薄膜在高低温环境下的稳定性.  相似文献   

4.
采用脉冲激光沉积方法在SrTiO_3衬底上制备了SrRuO_3底电极和(111)择优取向的PbZr_(0.1)Ti_(0.9)O_3外延铁电薄膜,通过顶电极Pt的构建形成了Pt/PbZr_(0.1)Ti_(0.9)O_3(111)/SrRuO_3铁电电容器结构,然后对PbZr_(0.1)Ti_(0.9)O_3(111)铁电薄膜开展了~(60)Co-γ射线总剂量辐照效应实验.结果表明:随着γ射线辐照剂量的增加,PbZr_(0.1)Ti_(0.9)O_3(111)铁电薄膜中的带状畴数目逐渐减少,剩余极化强度、矫顽场和电容值轻微减小,当辐照剂量为5 Mrad(Si)时,剩余极化值、矫顽场和电容值的衰减幅度仅12.4%、10.36%和13.78%;漏电流仅在高剂量辐照后产生轻微增大.可见,PbZr_(0.1)Ti_(0.9)O_3(111)铁电薄膜具有较好的抗辐射能力,在航空航天领域有一定的应用前景.  相似文献   

5.
采用基于量子力学完全能量矩阵的方法,考虑了由全部自旋态构成的3d~5组态电子的C_10~5维空间,在低对称下,构造3d~5组态离子完全能量矩阵,研究了掺杂体系TmAl_5O_(12):Fe~(3+)和Tm Ga_5O_(12):Fe~(3+)的络合物(Fe O_6)~(9-)局域微观结构。计算结果表明掺杂体系Tm Ga_5O_(12):Fe~(3+)局部结构参数R=2.016 5?和R=2.047 3?与相应的实验数据吻合,这也进一步证明了我们理论计算的可靠性。  相似文献   

6.
HfO2基铁电薄膜是一种环境友好型的铁电材料,具有尺寸可缩放性、与CMOS兼容性好等多方面优势,有望代替传统钙钛矿结构材料成为铁电存储器件的主要组成材料之一近年来,已有相关研究表明Zr掺杂的HfO2基薄膜具有良好的铁电性然而,针对其复合多层结构的铁电薄膜却鲜有报道为此,该研究利用金属有机物分解法制备了HfO2和ZrO2层交替生长的HfO2 ZrO2纳米多层薄膜,对薄膜的物相、表面形貌和铁电性能进行了相应的表征和分析,研究了退火工艺对薄膜铁电性能的影响结果表明,随着纳米层数的增加,HfO2 ZrO2薄膜的结晶性得到改善,且薄膜表面致密度增加,表面较为平整,晶粒有所细化在400 ℃、1 min的退火条件下,HfO2/ZrO2纳米多层薄膜具有明显的铁电性,电流翻转峰明显,剩余极化强度高达16 μC/cm2,纳米多层薄膜具有最小的漏电流密度以及良好的耐疲劳性能  相似文献   

7.
该文制备了TiN/Hf_(0.5)Zr_(0.5)O_2(HZO)/HfO_2/Si (MFIS)型的铁电晶体管栅结构,并在常规实验环境下对其进行了P-E、J-E、疲劳和保持等的电学性能测试.结果表明这种基于铪系氧化物的栅结构具有优良的电学性能,2P_r可达30μC/cm~2,2E_c约为6.8 MV/cm,矫顽场附近的漏电流密度为10~(-6)A/cm~2,在10~(5 )s保持时间内剩余极化值衰减10%,经10~7次翻转后剩余极化值基本保持不变,经10~9次翻转后剩余极化值的衰减维持在15%以内.MFIS铁电栅的~(60)Coγ射线电离辐射实验结果表明这种栅结构对总剂量电离辐射具有很强的免疫力,在辐射剂量高达5 Mrad(Si)时,电滞回线矩形度、对称性以及保持性能等几乎没有退化.该文所制备的全铪系薄膜铁电栅为高抗总剂量辐射、高读写寿命、长保存时间的高性能晶体管型铁电存储器的制备提供了数据支撑.  相似文献   

8.
以氧化石墨烯为载体,以Fe~(3+)和Fe~(2+)发生化学共沉淀形成的具有磁性的铁氧化物纳米粒子为磁性源,采用化学方法制备了Fe_3O_4/GO二元复合材料,并利用TEM、XRD、FTIR等手段对Fe_3O_4/GO二元复合材料进行了物理表征,结果表明成功合成了磁性氧化石墨烯。研究了此二元复合材料的吸附动力学、吸附等温线及初始pH值对吸附的影响,考察了Fe_3O_4/GO对水中Pb~(2+)的去除效果。结果表明,pH在7.0时复合材料的吸附效果最好,吸附时间在210 min左右时达到吸附平衡,最大吸附量为135.7 mg·g~(-1)。  相似文献   

9.
用溶胶-凝胶法,在Pt/Ti/SiO_2/Si(100)衬底上制备了钬铬共掺铁酸铋(BHFCO)-钛酸铋钠钾(NKBT)薄膜,系统研究不同BHFCO掺杂量对(1-x)NKBT-xBHFCO薄膜的微观结构、表面形貌和电学性能的影响.结果表明:680℃退火处理后的(1-x)NKBT-xBHFCO薄膜表面比较均匀、致密,结晶度较好;0.95NKBT-0.05BHFCO薄膜样品的剩余极化值(2P_r)最大(71.3μC/cm~2),矫顽场最小(2E_c=530 kV/cm),电滞回线饱和矩形度最好,漏电流最小(2.1×10~(-6 )A/cm~2).0.95NKBT-0.05BHFCO薄膜的,相对介电常数最大(约为493),介电损耗最小(约为0.04);薄膜的高温介电温谱表明,所有薄膜的居里温度(T_c)在(450±10)℃.不同厚度薄膜的介电性能表明,铁电薄膜内部的挠曲电效应显著降低了薄膜的最大介电常数值.  相似文献   

10.
采用溶胶-凝胶法制备了热电材料Ca_3Co_(4-x)Ni_xO_(9+δ)(x=0,0.17,0.25)粉体.利用XRD和SEM对材料的物相和形貌进行分析,XRD测试结果表明,随着镍掺杂含量增加,衍射峰向小角度偏移,说明了镍元素已经进入了Ca_3Co_4O_(9+δ)晶格中.通过SEM扫描发现,材料的晶粒呈层状结构且尺寸大小均匀.通过振动样品强磁计(VSM)对样品磁性进行分析,发现镍元素的掺杂对样品的磁性有轻微的影响.  相似文献   

11.
用快速急冷方法制备了非晶态Fe_(90-x)Co_xZr_(10)(0 ≤x≤90)合金,研究了样品的磁化强度与温度的关系.实验结果得到,随Co含量x的增加,样品的居里温度增加,而晶化温度下降,样品的室温磁化强度σ(RT)在x=30时出现极大值,文中讨论了影响σ(RT)的因素.  相似文献   

12.
以超顺磁Fe_3O_4纳米团簇为磁核,在传统Stber法的基础上引入超声辅助制备具有核-壳结构的单分散SiO_2/Fe_3O_4复合磁性微球,并使用XRD、TEM、VSM等测试方法,着重研究了超声功率对SiO_2/Fe_3O_4复合磁性微球分散性、形貌、结构、磁性能的影响。研究结果表明:引入超声可极大改善磁性微球的分散性,随着超声功率的增加,复合微球团聚逐渐变少、SiO_2包覆层变薄、空白球减少,但功率过大时,无核-壳结构的SiO_2/Fe_3O_4微球出现;当超声功率为20%P时,SiO_2/Fe_3O_4复合磁性微球各项性能(分散性、磁性能)最优。  相似文献   

13.
利用共溅射技术制备了MgxZn1-xO薄膜样品,研究了Mg的掺杂浓度对其晶体结构、光学带隙的影响,退火环境与温度对其晶体结构、表面形貌的影响.通过对XRD图的分析表明,所制MgxZn1-xO薄膜样品为六角纤锌矿结构,且随着x值的增大,样品的晶格常数c逐渐减小;对比真空环境下,氧气中退火温度为500~600℃时更有利于提高样品的结晶质量.对吸收谱的分析表明随着Mg掺杂浓度增大,样品的吸收边向短波方向移动,带隙增大.  相似文献   

14.
采用溶胶-凝胶旋涂法在表面氧化的Si (100)基片上制备了La1-xCaxMnO3 (x=0,0.1,0.15) 薄膜.利用X射线衍射(XRD)、原子力显微镜(AFM)、扫描电镜(SEM)及振动样品磁强计(VSM)对样品的结构、形貌和磁性进行了研究.结果表明:薄膜为正交钙钛矿结构,具有平整的表面,La0.85Ca0.15MnO3样品的薄膜厚度为334 nm.样品在居里温度附近发生铁磁-顺磁转变,随着Ca2+掺杂浓度的增加,样品的居里温度变大,x=0.15时,样品的居里温度为299 K.  相似文献   

15.
用化学共沉淀法制备了Er3+掺杂浓度不同、煅烧温度不同的纳米晶ZrO2(CaO)∶Er3+系列发光粉体,所制备的粉体均具有Er3+离子特征强室温荧光发射.同时观测到Er3+离子的上转换发射.讨论了上转换发射的跃迁机制,976 nm激发下的上转换过程是双光子过程.荧光强度与掺Er3+浓度关系研究表明:在相同条件下,用378nm荧光激发,分别测量了Er3+不同浓度800℃煅烧样品的发射谱,掺Er3+浓度达0.6%(摩尔分数)时达到最大,然后又随之降低.  相似文献   

16.
为解决TiO_2光催化纳米材料在使用过程中不易回收的问题,采用直接水解法成功制备了磁性核壳结构Fe_3O_4@TiO_2纳米材料,采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X-射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)等对其物理化学特性进行了表征,并且考察了制备工艺条件,如钛酸四丁酯(TBOT)用量、氨水用量、反应温度、反应时间等因素对Fe_3O_4@TiO_2纳米颗粒光催化效果的影响。结果表明,TiO_2在Fe_3O_4颗粒表面进行了有效的包覆,形成了良好的包覆层,优化后制备工艺条件为:TBOT用量1.0 m L、氨水用量0.3 m L、制备温度85℃、制备时间4h,所得Fe_3O_4@TiO_2纳米材料对罗丹明B的催化降解效率明显提高,罗丹明B降解率达到98%。对负载前后纳米颗粒的磁滞回线进行测试发现,TiO_2的包覆并未明显减弱Fe_3O_4的磁性,所制备的可回收磁性Fe_3O_4@TiO_2催化剂具有良好的稳定性和重复利用性能。  相似文献   

17.
通过溶胶—凝胶法制备了L10相的CoPt和Ag掺杂CoPt磁性纳米颗粒,并利用X射线衍射(XRD)、透射电子显微镜(TEM)和振动样品磁强计(VSM)对所制备的样品进行了结构和磁性表征.XRD和TEM分析表明,700℃所制备的CoPt磁性纳米颗粒为面心四方(FCT)结构,而Ag掺杂CoPt磁性纳米颗粒的结构为面心立方(FCC)结构,说明Ag掺杂抑制了面心四方CoPt磁性纳米粒子的形成.磁性测试结果表明,L10相的CoPt纳米颗粒室温下具有铁磁性,其矫顽力为2954 Oe,而Ag掺杂CoPt磁性纳米颗粒的矫顽力只有1632 Oe.  相似文献   

18.
采用溶胶-凝胶的方法制备了热电材料Ca3Co4-xFexO9+δ(x=0~0.5)的粉体.研究了烧结温度及Fe掺杂含量对粉体微观结构的影响.X射线衍射(XRD)测试结果表明,热处理温度越高,样品的结晶度越好.但是,样品在升到一定温度后会分解.从样品的扫描电子显微(SEM)照片来看,材料的晶粒形状尺寸均匀.通过振动样品强磁计(VSM)测试样品磁性发现样品的磁性随着掺杂Fe的浓度增加而增强.  相似文献   

19.
二维过渡金属卤化物(如CrI3)以其独特的电子结构和磁性等性质,受到了越来越多的关注本征的二维过渡金属卤化物通常具有高对称性的结构(如D3d对称性),导致铁电性质的缺失为了在过渡金属卤化物中诱导多铁性,该文采用密度泛函理论系统地研究了金属原子Li或Al掺杂对二维过渡金属三卤化物RhX3、IrX3(X=Cl、Br)材料结构稳定性、电子性质以及铁磁铁电性质的影响计算结果表明,Li或Al掺杂会引起体系的Jahn Teller畸变,降低体系的结构对称性,从而产生面内的极化同时,金属掺杂引入的电子局域在过渡金属的d轨道上,形成局域磁矩,使得体系同时具有了铁电性和磁性这一发现为实现二维的铁磁铁电性材料提供了新的研究思路,将对自旋电子学的研究发展产生重要意义  相似文献   

20.
采用溶胶-凝胶法制备了Co_(1-x)Ni_xFe_2O_4/SiO_2(0<x<1)纳米复合材料,并利用差热和热重综合热分析仪(TG/DTA)研究了热处理过程中干凝胶的变化,利用X射线衍射仪(XRD)和振动样品磁强计(VSM)对产物的结构和磁性进行分析.结果表明:Ni~(2+)的掺杂引起样品晶胞体积减小,并且随着Ni~(2+)含量的增加,样品的饱和磁化强度Ms和矫顽力He都减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号