首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 92 毫秒
1.
粒子滤波在锂离子电池剩余寿命预测中的应用   总被引:1,自引:0,他引:1  
为有效预测锂离子电池剩余寿命,引入了粒子滤波算法.对粒子滤波的基本概念和算法实现步骤进行介绍,在给出锂离子电池寿命统计数据的基础上,应用粒子滤波算法计算其剩余寿命,解决了锂离子电池剩余寿命预测的问题.对相同的锂离子电池统计数据,利用扩展卡尔曼滤波方法计算进行对比实验.分析结果表明:粒子滤波算法比扩展卡尔曼滤波算法可靠,能较好地预测出锂离子电池的剩余寿命,误差小于5%.  相似文献   

2.
针对锂离子电池剩余使用寿命预测中机理模型建立复杂、数值求解困难,而纯数据驱动方法通用性不强的问题,提出了一种基于高斯拟合模型和粒子滤波算法相结合的半经验融合预测方法。首先设计并实现锂离子电池寿命衰减实验采集多组数据,其次利用MATLAB工具进行数据预处理并利用高斯拟合方法建立寿命衰减规律描述公式,再基于此建立寿命衰减状态空间模型和观测模型,最后利用粒子滤波算法进行跟踪预测。结果表明此预测方法能达到小于5%的预测精度。  相似文献   

3.
锂离子电池内部结构复杂,受外界影响大,使其容量退化过程具有不确定性因素而呈现随机性.对电池容量退化服从非线性维纳过程建立状态空间模型,并认为参数是服从共轭分布的随机变量,增加了模型不确定性使之更加符合锂离子电池容量的退化过程.利用自助法获得先验分布参数初始值,由共轭分布的性质可以得到后验分布的类型,由此得到简便的参数估计方法.粒子滤波可对每一时刻的参数及退化状态进行估计和更新,根据提前设定的状态阈值可以预测电池的剩余寿命.具体实例验证了方法的准确性,该方法对可靠性高、样本量少的电池的剩余寿命预测有借鉴意义.  相似文献   

4.
锂离子电池因其循环寿命产生的问题更加被重视。为了对锂离子电池的剩余循环使用寿命进行预测研究,采用了粒子滤波算法。首先对粒子滤波算法进行了概述。然后用它对电池的剩余使用寿命预测。简要描述了3组电池数据下的实验;并与扩展卡尔曼滤波进行了对比实验分析。实验结果表明了粒子滤波算法在3组数据下的绝对误差平均值近似4%,均方根误差平均值近似5%,扩展卡尔曼滤波的绝对误差平均值和均方根误差平均值分别近似6%和7%。说明了粒子滤波在锂离子电池剩余使用寿命预测中比扩展卡尔曼滤波精度更高。  相似文献   

5.
锂离子电池是新能源汽车的核心部件之一,锂离子电池的剩余寿命对新能源汽车的性能和安全至关重要.目前剩余寿命的预测算法主要有物理和化学分析法、数据驱动法和融合方法,其中融合方法是最近几年预测算法的研究热点,可以融合方法进行预测.本文通过微软公司的Visual Studio的Winform和Maple Tech公司的Math...  相似文献   

6.
针对锂离子电池的容量恢复现象导致的剩余寿命预测精度不高的问题,提出了一种锂离子电池的多状态模型剩余寿命预测方法.首先通过分析锂电池的衰退数据将锂离子电池的退化过程分为正常退化、容量恢复和加速退化三种状态,然后分别对三种状态的退化过程进行建模并验证了模型的有效性,将3种状态的模型组合得到锂离子电池多状态容量衰退模型.然后...  相似文献   

7.
锂离子电池凭借其出色的电性能,已然成为动力和储能的最佳载体,对锂电池的剩余寿命的预测显得尤为重要.目前,锂电池剩余寿命的主要预测方法有数据分析和融合分析等方法,这些方法的输入变量是锂离子电池的放电容量.考虑到锂电池放电容量存在获取速度慢,效率低等缺点,本文提出一种基于放电电压降作为输入变量的剩余寿命预测方法,并基于NA...  相似文献   

8.
在基于粒子滤波算法的锂离子电池剩余使用寿命预测过程中, 由于基本粒子滤波算法存在粒子退化问题, 难以保证电池寿命预测的精度。为此, 提出一种基于MCMC(Monte Carlo Markov Chain)的无迹粒子滤波改进算法, 从选取适当的重要性密度函数和重采样过程两方面入手, 更全面地克服基本粒子滤波算法中的粒子退化问题, 进而提高锂离子电池剩余使用寿命预测的精度。实验仿真结果表明, 改进后的粒子滤波算法能更好地跟踪电池容量衰退趋势, 预测精度也明显优于基本粒子滤波算法, 为锂离子电池剩余使用寿命的预测提供了新思路。  相似文献   

9.
针对锂离子电池健康状态(state-of-health, SOH)估计与剩余有效工作时间(remaining useful life,RUL)预测进行探讨. 提出了一种利用SOH参数反应电池状况,并且建模预测电池RUL的方法. 改进了现有研究成果在RUL预测中不能更新其概率密度的缺陷. 同时应用支持向量回归机(SVR-PF)改进标准粒子滤波算法具有粒子贫化效应的缺点. 仿真结果表明提出的参数准确地反应了电池的状况,同时也准确地预测了电池的RUL;SVR-PF具有比粒子滤波更强的平滑与预测能力.   相似文献   

10.
针对锂离子电池在线剩余寿命预测时容量难以直接测量以及预测表达的不确定性等问题,提出一种利用锂离子电池充放电监测参数构建剩余寿命预测健康因子的方法框架,实现了锂电池健康状态的表征,同时利用高斯过程回归(Gaussian process regression,GPR)方法给出剩余寿命预测的不确定性区间,从而构建了锂离子电池在线剩余寿命预测的方法体系。基于NASA锂离子电池数据集和卫星锂离子试验数据的剩余寿命预测验证和评估实验,表明本文提出的方法框架可以很好地支撑电池在线剩余寿命预测的应用,具备较好的电池剩余寿命预测精度和不确定性管理能力。  相似文献   

11.
目前基于数据驱动的锂离子电池RUL预测方法不能较好地适应于同类型不同电池的RUL预测,且预测精度易受健康因子冗余或不足的影响.针对以上问题,提出一种结合主成分分析(PCA)特征融合与非线性自回归(NARX)神经网络的锂离子电池RUL间接预测框架.首先提取多个能反映电池性能退化的可测参数,并将PCA去除冗余后的结果作为预测健康因子;然后利用一组电池的全寿命数据构建基于NARX神经网络的健康因子和容量预测模型,对同类型不同电池预测时将该电池寿命前期健康因子作为输入,即可间接预测出其RUL.最后实验结果表明所提框架在同类型不同电池RUL的预测中精度较高且适应性较强.   相似文献   

12.
13.
针对目前大多数基于人工智能的轴承剩余使用寿命(remaining useful life,RUL)预测方法不能很好地预测不同工况下轴承剩余寿命的问题,提出了一种基于迁移学习的寿命预测方法,对不同工况下的轴承进行剩余寿命预测.对采集的轴承原始振动信号进行傅里叶变换得到频域信号,以卷积神经网络和长短时记忆网络作为特征提取器...  相似文献   

14.
针对深度学习构造复合健康指标可解释性差,预测结果难以量化发动机剩余寿命预测中的不确定性问题,提出一种基于数据融合与门控循环单元(GRU)的航空发动机剩余寿命预测方法。首先,将多源传感器数据加权融合构造一维复合健康指标;然后,利用Bootstrap方法对一维复合健康指标进行有放回抽样,获取n组发动机退化特征样本;最后,利用一维复合健康指标和n组发动机退化特征样本构建“n+1”个基于GRU的剩余寿命预测模型,实现对航空发动机剩余寿命的区间预测。为证明所提方法的可行性和优越性,采用涡扇发动机退化数据集(C-MAPSS)的数据进行实验,得到的均方根误差为15.825 4,评分函数值为344.210 5。结果表明,该方法不仅能获得较好的预测效果,还能有效解决深度学习在发动机剩余寿命预测中存在的缺陷。  相似文献   

15.
航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度,减小了时间和空间复杂度;通过注意力层整合后的信息,进一步通过前馈神经网络层和卷积层,提取传感器的空间特征,编码层之间通过扩张因果卷积相连接,扩大了感受野,提高了模型对长序列信息的捕获能力。在新公开的N-CMAPSS数据集上验证算法,实验结果表明,相比于实验中的对比模型,所提模型的RMSE和Score值均有提升,推理速度也优于其他模型。  相似文献   

16.
粒子滤波算法本身存在着粒子退化问题,对于衰减趋势变化剧烈的模型,难以获得精确的预测结果,限制了算法的适用范围。针对以上问题对粒子滤波进行改进,通过引入粒子群优化算法中的粒子更新机制,优化粒子的全局位置信息,进而重新分配各粒子权重,降低了重采样阶段粒子重置的比例,改善了算法固有的粒子退化现象,达到改进算法、提升算法预测性能的目的;同时,为验证算法的实际效果,以马里兰大学先进寿命周期工程中心(CALCE)发布的锂电池容量实验数据集为基础,分别使用传统粒子滤波算法与改进的算法进行剩余寿命预测仿真。经过对比发现:改进算法误差下降33.6%,可获得更为精确的预测结果,重采样率下降18.3%,粒子退化问题得到改善。  相似文献   

17.
由于轴承退化数据较少及不同工况之间轴承数据分布差异较大,实现在一个轴承上训练的剩余寿命预测模型,能够预测其他同一工况或不同工况不同轴承的剩余使用寿命,是一个待解决的难题。本文提出基于跨域均值逼近的联合分布自适应轴承剩余使用寿命预测方法,首先,对轴承原始振动信号数据进行归一化处理;其次,通过投影矩阵将源域和目标域数据映射到一个低维公共特征子空间中,利用基于跨域均值逼近的联合分布自适应方法对源数据和目标轴承数据进行领域适配;最后,利用门控循环单元对轴承剩余使用寿命进行预测。在IEEE PHM Challenge 2012数据集上进行多组迁移实验,结果表明,所提方法在同一工况或不同工况下不同轴承间有良好的预测精度。  相似文献   

18.
为确保锂电池在军用无人机以及新能源汽车使用期间的安全性,需要对其进行全生命周期的健康监测和寿命预测。针对长短期记忆神经网络(Long Short-Term Memory, LSTM)模型参数较难选取导致所建立的锂电池剩余使用寿命预测方法精度不足问题,文中提出一种基于鲸鱼优化算法(Whale Optimization Algorithm, WOA)对LSTM的剩余寿命预测模型(WOA-LSTM)进行优化。首先使用WOA算法对LSTM的隐含层神经元数量、学习率进行寻优,避免经验选取参数的盲目性;其次将寻优后的超参数重新赋值给LSTM网络,构建与锂电池数据特征更为匹配的预测模型;最后采用NASA PCoE实验室锂电池的失效数据集验证算法的有效性。仿真结果表明,文中所提出的预测模型相较于LSTM模型、Elman模型、PSO-LSTM模型精度平均分别提升了7%、4%、3%,具有较好的预测效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号