首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 390 毫秒
1.
基坑开挖会引起土体的扰动从而带动近邻管线的位移,甚至会引起管线的开裂破坏。以实例工程为背景,运用有限元软件PLAXIS模拟基坑开挖引起大直径管线位移的变化,得出基坑开挖深度与埋设污水管线深度之间存在三种不同的位置关系,并且分析基坑开挖引起管线水平和竖向位移之间的差异变化,基坑开挖引起管线水平位移的增长速率为0.57 mm/m,竖向位移增长速率为0.73 mm/m,所得的结论和建议可为相似工程提供参考。  相似文献   

2.
为了研究由狭长型的市政管廊基坑开挖引起邻近管线沿长度方向的位移变化.以杭州管廊基坑工程为背景,运用有限元软件PLAXIS建立三维数值模型,探讨不同围护结构形式下的基坑开挖对邻近大直径污水管线的影响规律.分析得出管线的位移因近邻基坑的开挖存在时空效应,且提高基坑围护结构的刚度可以减小20%管线位移量;同一围护结构形式下两条管线的竖向位移变化趋势基本一致,但两条管线之间在水平方向的位移存在较大的差距,应分别监测两条管线的水平位移,研究结论和建议可为相似工程提供一定的理论依据.  相似文献   

3.
基坑开挖会造成下部隧道周围土压力变化以及土体产生位移,使隧道结构稳定性受到影响,从而变形控制显得尤为重要。以合肥南站南广场基坑工程实测数据为例,采用PLAXIS 2D有限元软件对基坑下部隧道和地表变形的情况进行数值计算。研究表明:数值计算结果与实测值较为吻合,隧道发生竖向和水平位移,竖向位移比水平位移大,隧道的位移值随着开挖深度呈线性趋势;基坑开挖会引起隧道上方地表变形,地表沉降呈向下二次抛物线形式,坑底产生了塑性隆起。  相似文献   

4.
为研究基坑开挖对临近既有地铁隧道结构的影响,以济南历下医养结合中心项目近接地铁R3线施工为工程背景,开展风险判定并采用 FLAC3D 进行大型三维数值模拟研究。结果显示:基坑外部作业对地铁隧道的影响等级为二级;隧道开挖引起地表沉降模拟结果与实测数据基本吻合,数值模拟结果较可靠;基坑开挖引起左线隧道竖向位移最大-2.27mm、水平位移最大4.59mm,右线隧道竖向位移最大-3.0mm、水平位移最大5.19mm,左线隧道轨道竖向位移最大-2.27mm、轨向高差最大0.528mm,右线隧道轨道竖向位移最大-3.0mm、轨向高差最大0.763mm,均出现在B基坑西侧;基坑开挖引起径向附加压力很小,在10~20kPa范围内。总体上基坑开挖对隧道结构造成的影响均小于规范限值。  相似文献   

5.
文章以合肥某地铁车站深基坑为工程背景,依据岩土工程地质勘查资料,运用有限差分软件FLAC进行数值分析,结合基坑围护结构-土体-管线三者为一体的统一体系,研究了基坑开挖对临近地下管线变形和受力性状的影响.结果表明,管线的最大水平与竖向位移均发生在基坑中部,且水平位移受基坑开挖的影响较大;沿轴向方向上管线内侧的弯矩从端头到坑角先增大后减小,并在坑角处达到最小值,进入基坑开挖范围之后管线的最大正弯矩发生在距坑角12 m处横截面的内侧.  相似文献   

6.
为探究西安地区黄土地层新建基坑开挖对邻近既有地铁车站的影响规律,依托西安某新建基坑实际工程,借助MIDAS GTS NX有限元软件建立了基坑与既有车站结构三维数值模型,研究新建基坑开挖全过程中围护结构变形与内力、既有地铁车站位移与周边地表沉降的响应规律,将模拟结果与实测结果对比验证其准确性。结果表明:基坑开挖过程中,围护结构位移较小,钢管内支撑可以有效控制围护结构的变形;既有车站最大侧向位移、竖向位移均出现于车站中间部位,侧向变形曲线呈典型的“内凸型”,竖直方向表现为沉降变形,变形增长速率随着基坑开挖深度的增加有所减小;车站周边地表沉降随基坑开挖逐渐增大,至基坑开挖结束,最大沉降值为-8.63 mm;数值模拟结果与现场监测数据规律一致且偏差较小,开挖完成后围护结构的最大位移为7.20 mm,既有车站侧墙中间部位的最大水平位移为1.18 mm,基坑施工风险较低,基坑卸载对临近既有地铁车站影响较小。  相似文献   

7.
基坑开挖会对下卧管线产生不利影响,如何控制基坑开挖对下卧管线产生的不利影响是工程界的热点问题.以杭州市沿江大道管廊基坑上跨污水管段工程为背景,利用ABAQUS软件进行数值模拟,建立了三维有限元模型.在此基础上分析了管线周围土体注浆加固的作用,同时研究了改变管线与基坑的夹角引起管线竖向位移的变化规律.分析结果表明:上方基坑的开挖会使下卧管线呈现出"中间大、两边小"的"上凸型"变形模式,对下卧基坑管线周围进行合理的注浆加固,能有效减少管线的整体隆起变形;且下卧管线与基坑长边夹角越大,管线的最大隆起位移越小,当管线与基坑长边垂直时,管线的隆起变形最小.研究结果可为今后类似工程提供借鉴.  相似文献   

8.
开展现场试验和考虑土体刚度小应变特性的三维数值模拟,研究了海安高铁站房扩建基坑卸荷对紧邻桩基础房屋的影响。结果表明:围护结构MJS工法桩施工引起的紧邻桩基位移小于0.25 mm。MJS工法桩和多支撑联合作用下,基坑围护结构最大侧向变形为(0.045%~0.11%)H(H为开挖深度)。站房桩基嵌入粉砂层中,基坑施工引起的桩基水平位移明显高于上部建筑沉降。高铁站房—基坑的水平净距增至1.5He(He为最终开挖深度)后,桩基水平位移接近于0,表明基坑施工对高铁站房的影响区域为1.5He。围护结构厚度从0.30 m增至0.63 m后,桩基最大水平位移降低了68.7%;继续增加围护结构厚度,桩基水平位移降幅不明显。基坑开挖宽度从0.83He增至2.0He时,桩基最大水平位移的增幅仅为29.7%,表明基坑开挖宽度对高铁站房的影响相对较小。  相似文献   

9.
为了确保基坑开挖中周边环境的安全,以西安地铁某车站深基坑开挖为例,运用ABAQUS软件建立三维模型模拟开挖对周边地表沉降和围护结构变形的影响,重点研究开挖中周边地表的沉降分布规律和围护结构变形的规律,并与现场实际监测数据进行对比分析。结果表明:地表沉降的实测值比模拟计算值大,但变化趋势基本一致;在基坑开挖过程中,地表最大沉降位置距离基坑边缘约11 m处,最大值为3.298 mm;围护结构水平变形沿开挖深度的变化曲线呈抛物线形,最大水平位移位于基坑最大开挖深度的 1/2 处,最大水平位移为11.05 mm,距基坑长边边缘0~25 m及短边边边缘0~22 m范围内的地表沉降最大,施工监测中应重点关注。  相似文献   

10.
基坑开挖会对邻近建筑物产生影响,建筑物的存在也会增加基坑施工的风险,开展基坑与邻近建筑物的相互影响研究具有重要意义。以某深基坑工程为背景,通过现场监测数据分析基坑开挖对围护桩位移的影响,然后建立三维数值模型,并与现场监测进行对比验证了模型的准确性。最后分析了围护桩刚度、建筑物层数及基坑与建筑物相对位置等参数下基坑与建筑物的相互影响规律。研究结果表明:采用围护桩结合锚索支护会显著减小基坑开挖引起的围护桩变形,基坑开挖引起的建筑物基础沉降和水平位移随围护桩刚度的增加变化幅度均在5%以内;建筑物层数每增加5层,建筑物基础的沉降和水平位移分别增加约8%和10%,靠近建筑物的基坑围护桩水平位移增加约5.5%;在建筑物与基坑的夹角在30°以上时,基坑开挖引起的建筑物基础变形均在2 mm以内,引起的围护桩水平位移均在0.8 mm以内。研究结果可以为后续类似工程提供参考和借鉴。  相似文献   

11.
针对深基坑开挖引起的周围地下管线位移,基于两阶段法,首先给出了基坑开挖引起的周围自由土体位移的计算方法,然后结合Winkler弹性地基梁模型,建立了受土体卸载附加变形影响的地下管线竖向和水平方向位移方程,通过有限差分法求解出地下管线位移。将此方法应用于工程实例,其理论计算结果与现场实测数据基本吻合,验证了两阶段法的合理性及适用性。本方法可用于分析管线埋深、管线距离、地基土性质等因素对管线变形的影响。  相似文献   

12.
为研究开挖方式对深基坑变形分析与施工优化,采用有限元软件FLAC3D对上海某深基坑开挖进行模拟.通过改变开挖方式,在数值计算中设置若干种工况,研究开挖过程中的基坑围护结构位移变化、地表沉降.研究结果表明:3种不同的开挖方法对于基坑变形的控制能力依次是台阶式退挖、跳挖、竖向顺序分层开挖.在采用了新的开挖方式后,基坑周边的最大沉降值也由之前的10 mm左右减小到8 mm左右,基坑围护结构最大水平位移由原来的45 mm减小到40 mm,说明新的开挖方式有效的控制了深基坑变形.  相似文献   

13.
结合深基坑变形机理和工程案例,对厦门某地区一深基坑的周边土体深层水平位移、围护桩水平、竖向位移、地下水位等监测成果进行分析,以研究深基坑施工过程中的变形特性和变化规律.研究结果表明:工程地质条件、基坑开挖深度、周边荷载以及支撑拆撑过程等是引起深基坑变形及稳定性的主要因素;合理结构设计和土方开挖方案,并根据监测数据实时指导施工和采取合理控制变形的措施是确保基坑安全的基础.  相似文献   

14.
为研究高水位红砂岩地层基坑降水开挖引起的变形规律,以兰州东方红广场地铁车站深基坑工程为背景,对基坑降水开挖过程中桩体水平位移以及坑周地表沉降进行现场监测.采用有限差分软件Flac3D对基坑降水开挖过程中的位移进行模拟计算.监测结果表明:随着基坑开挖深度的增加,桩体最大水平位移的位置逐渐下移,最终靠近基坑底部,大约在坑底以上1~2 m;地表最大沉降值出现在距离基坑边5~7 m处,大约0.29~0.41倍的基坑开挖深度;桩间水土流失是造成地表沉降过大的主要原因.模拟结果与实测结果对比分析得出:地表沉降模拟值与监测值变化趋势基本一致;桩体在距地面小于12 m部分其水平位移模拟值与实测值非常接近,大于12 m部分实测值明显大于模拟值.  相似文献   

15.
通过建立三维有限元数值模型,分析了双基坑开挖不同施工阶段对已有隧道变形的影响.结果表明:双基坑与邻近隧道平行布置时,隧道会发生较大变形,其水平最大位移比垂直布置时的大10%,且后开挖基坑造成的隧道位移较先开挖基坑变形大7%左右;双基坑与隧道垂直布置时,远隧道基坑开挖对隧道影响极小,隧道变形主要由近隧道基坑开挖决定.针对上述水平布置和垂直布置工况均发现,隧道一侧双基坑开挖施工对隧道的水平位移影响较大,竖向位移约为水平位移的1/10.隧道本身在竖直方向变形为上下向中心挤压,隧道在水平方向上有指向基坑的侧移,同时隧道本身的变形为中心向两侧拉伸,且在开挖基坑中心位置对应处隧道的位移与变形最为明显.  相似文献   

16.
为定量化分析狭长型地铁基坑的空间效应对支护结构变形的影响,在验证基坑数值模型有效的基础上,通过有限元数值模拟方法研究了不同长宽比和深宽比基坑开挖后支护结构的变形.结果 表明:随着基坑长宽比的增大,长边支护结构的最大水平位移变化显著,且明显大于短边的最大水平位移,浅坑的(H/B <1,H为挖深、B为基坑宽度)长短边最大水平位移比达到8,深坑(H/B>1)的位移比在3左右;基坑长宽比为1<L/B <3(L为基坑长度)时,基坑长边的水平位移受空间效应影响变大;工程设计中,长宽比为3左右的浅坑和长宽比为2左右的深坑适合采用二维剖面设计方法.  相似文献   

17.
以福建省厦门市某邻近既有综合管廊基坑开挖项目为例,针对SMW工法桩+斜抛撑支护体系,采用FLAC3D有限差分软件建立综合管廊的三维数值模型,进行数值结果分析;研究综合管廊与基坑距离对基坑土体位移场、综合管廊位移和变形、综合管廊周围土体应力分布的影响. 结果表明:坑外地表沉降的影响范围不超过12 m,最大沉降位于坑外4.5 m处,基坑开挖引起的综合管廊最大水平位移和竖向位移均未超过规范的预警值;综合管廊与基坑距离和综合管廊水平位移近似成反比关系;综合管廊发生朝向基坑一侧的倾斜,倾斜度随着综合管廊与基坑距离的减小而增大;综合管廊两侧墙产生朝向基坑的水平推力使综合管廊产生朝向基坑的变形和水平位移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号