首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
应用最优控制理论给出了二阶微分方程周期 积分边值问题的最优可解性条件.  相似文献   

2.
3.
一类非线性积分微分方程周期边值问题解的存在性   总被引:3,自引:0,他引:3  
利用线性积分微分方程解的构造,建立了一类非线性积分微分方程周期边值问题解的单调迭代程序,证明了该问题最大民最小解的存在性。  相似文献   

4.
讨论如下一类二阶积分-微分方程周期边值问题:u″(t)+a2u(t)=f(t,u,(Su)(t)),t∈[0,2π],u(0)=u(2π),u′(0)=u′(2π)正解的存在性和多重性,其中S是Fredholm积分算子.通过构造格林函数并利用锥上不动点定理证明了正解及多重正解的存在性条件.  相似文献   

5.
在Banach空间中,利用单调迭代技巧研究了二阶混合型积分微分方程的周期边值问题上解小于等于下解的情形,得到了最小最大解的存在性。  相似文献   

6.
给出了Banach空间中非线性一阶积分微分方程周期边值问题在一序区间上的最大解与最小解的存在性。  相似文献   

7.
Banach空间中积分微分方程周期边值问题   总被引:3,自引:0,他引:3  
给出了Banach空间中非线性一阶积分微分方程周期边值问题在一序区间上的最大解与最小解的存在性.  相似文献   

8.
带有Caratheodory函数的积分微分方程的周期边值问题   总被引:1,自引:0,他引:1  
本文研究一类带有Caratheodory函数的二阶积分微分方程的周期边值问题,应用比较结果和单调迭代法证得最大解和最小解的存在性。  相似文献   

9.
利用单调迭代技巧,给出了混合型脉冲微分-积分方程周期边值问题的最大解和最小解的存在性。  相似文献   

10.
考察Banach空间一般的二阶混合型积分-微分方程,利用Monch不动点定理和一个比较不等式,获得了其周期边值问题解的一个存在性定理.这一结果考虑了通常方程中导数与同定限积分算子的作用,改进和推广了现有结果.  相似文献   

11.
研究一类二阶常微分方程四点边值问题解的存在性. 利用上下解方法、 比较原理和Schauder不动点定理证明了相应问题解的存在性, 并给出了数值算例.  相似文献   

12.
研究了一类二阶非线性微分方程非局部多点边值问题正解的存在性,利用迭代的方法得到方程的正解,并且得到了迭代序列收敛的速度估计.  相似文献   

13.
给出一类非线性椭圆方程组边值共振问题有解的一组主条件,所凭借的主要工具是含参紧向量场的解集连通理论。  相似文献   

14.
讨论了二阶非线性椭圆型方程的一般边值问题.首先给出了此问题解的表示式和解的估计式,然后使用复分析方法证明了上述问题解的存在唯一性.  相似文献   

15.
一类2阶边值问题的分歧点   总被引:1,自引:0,他引:1  
考虑如下的2阶非线性方程的边值问题:x″=λ(Ax+Bx′)+f(t,x,x′,λ)(0≤t≤1),x(0)=x(l)=0.在关于A,B,f的一组条件下,利用Krasnoselskii定理证明了上述问题存在分歧点。  相似文献   

16.
本文针对一类二阶椭圆型偏微分方程组的边值问题,提出了有限元算法,给出了有限元近似解在L2,H模下的最优阶误差估计式.  相似文献   

17.
利用Mawhin的连续性定理及迭合度理论,讨论了共振条件下分数阶微分方程cDβ0+α(t)cDα0+x(t)=f(t,x(t),cDβ0+α(t),cDα0+x(t)),t∈[0,1] cDα0+x(0)=0,x(1)=sum from m to i=1 aix(ζi)多点边值问题解的存在性,得到解存在的充分条件,推广了整数阶微分方程共振问题已有的结果.  相似文献   

18.
利用Banach空间中Krasnoselskii锥不动点定理,主要讨论了一类二阶周期边值问题正解的存在性,在一定意义上简化了判断此类周期边值问题正解存在性的条件,从而推广了该类问题的结果.  相似文献   

19.
研究一类非线性二阶方程三点边值问题变号解的存在性。通过相应的Green函数,将该问题转化为Hammerstein型积分方程,于是此问题的解等价于一个非线性算子的不动点。进一步,利用Green函数的性质,证明了非线性算子所对应的线性算子是强正的,其所有的特征值都是正的,它们的代数重数全为1。最终,根据线性算子的特征值性质以及非线性项所满足的假设条件,借助于一个抽象的理论结果,证明了非线性算子至少有一个变号不动点,从而得到了此类边值问题变号解的存在性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号