首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The internal organs of animals often have left-right asymmetry. Although the formation of the anterior-posterior and dorsal-ventral axes in Drosophila is well understood, left-right asymmetry has not been extensively studied. Here we find that the handedness of the embryonic gut and the adult gut and testes is reversed (not randomized) in viable and fertile homozygous Myo31DF mutants. Myo31DF encodes an unconventional myosin, Drosophila MyoIA (also referred to as MyoID in mammals; refs 3, 4), and is the first actin-based motor protein to be implicated in left-right patterning. We find that Myo31DF is required in the hindgut epithelium for normal embryonic handedness. Disruption of actin filaments in the hindgut epithelium randomizes the handedness of the embryonic gut, suggesting that Myo31DF function requires the actin cytoskeleton. Consistent with this, we find that Myo31DF colocalizes with the cytoskeleton. Overexpression of Myo61F, another myosin I (ref. 4), reverses the handedness of the embryonic gut, and its knockdown also causes a left-right patterning defect. These two unconventional myosin I proteins may have antagonistic functions in left-right patterning. We suggest that the actin cytoskeleton and myosin I proteins may be crucial for generating left-right asymmetry in invertebrates.  相似文献   

2.
Vermot J  Pourquié O 《Nature》2005,435(7039):215-220
A striking feature of the body plan of a majority of animals is bilateral symmetry. Almost nothing is known about the mechanisms controlling the symmetrical arrangement of the left and right body sides during development. Here we report that blocking the production of retinoic acid (RA) in chicken embryos leads to a desynchronization of somite formation between the two embryonic sides, demonstrated by a shortened left segmented region. This defect is linked to a loss of coordination of the segmentation clock oscillations. The lateralization of this defect led us to investigate the relation between somitogenesis and the left-right asymmetry machinery in RA-deficient embryos. Reversal of the situs in chick or mouse embryos lacking RA results in a reversal of the somitogenesis laterality defect. Our data indicate that RA is important in buffering the lateralizing influence of the left-right machinery, thus permitting synchronization of the development of the two embryonic sides.  相似文献   

3.
Teratogenic drugs inhibit tumour cell attachment to lectin-coated surfaces   总被引:1,自引:0,他引:1  
A G Braun  D J Emerson  B B Nichinson 《Nature》1979,282(5738):507-509
Interactions between embryonic cells are generally thought to have a central role in the control of development. When these morphogenic interactions are interrupted by either physical intervention or genetic defects, normal development is impaired. In accord with these experiments, specific interactions between embryonic cells have been demonstrated in several in vitro systems. Many investigators have described homotypic aggregation of chick embryo cells, and heterotypic specificity has been described. Because of the importance of morphogenic cell-cell interactions in development it follows that agents that interfere with these interactions, regardless of the interference mechanism, are potential teratogens. Here we have used a simple in vitro cell to surface recognition system in an attempt to screen for potential teratogens. We have found a very high correlation between inhibitory activity in the in vitro assay and reported teratogenic activity in human or animal studies. This suggests that many teratogenic agents may act by interfering, in an as yet unknown way, in normal cell to cell interactions.  相似文献   

4.
Murine embryonic stem (ES) cells are pluripotent cell lines established directly from the early embryo which can contribute differentiated progeny to all adult tissues, including the germ-cell lineage, after re-incorporation into the normal embryo. They provide both a cellular vector for the generation of transgenic animals and a useful system for the identification of polypeptide factors controlling differentiation processes in early development. In particular, medium conditioned by Buffalo rat liver cells contains a polypeptide factor, ES cell differentiation inhibitory activity (DIA), which specifically suppresses the spontaneous differentiation of ES cells in vitro, thereby permitting their growth as homogeneous stem cell populations in the absence of heterologous feeder cells. ES cell pluripotentiality, including the ability to give rise to functional gametes, is preserved after prolonged culture in Buffalo rat liver media as a source of DIA. Here, we report that purified DIA is related in structure and function to the recently identified hematopoietic regulatory factors human interleukin for DA cells and leukaemia inhibitory factor. DIA and human interleukin DA/leukaemia inhibitory factor have thus been identified as related multifunctional regulatory factors with distinct biological activities in both early embryonic and hematopoietic stem cell systems.  相似文献   

5.
Mammalian cloning has been one of the most active research topics in the world. Cloning within vitro culured foetal fibroblast cells, in comparison with embryonic cells, can be used not only to theoretically study the embryonic or cellular development and differentiation in mammals, but also to utilize the unlimited fibroblast cells to produce large numbers of clonings. The preliminary results are as follows: (i) The division and development of the cloned embryos with embryonic donor cells and goat foetal fibroblast donor cells were 55%, 77% and 35%, 31%, respectively. There is no significant statistical difference between them, (ii) These studies result in the birth of two cloned goats derived from two 30-day foetal fibroblast cell lines, which are the first cloned mammals from somatic cells in China. This project has established a technological data base for the furture research on adult mammalian somatic cloning and nucleocytoplasmic interactions in animal development, and a novel technique for the cloning of animals with a high-level expression of transgene(s).  相似文献   

6.
Egli D  Rosains J  Birkhoff G  Eggan K 《Nature》2007,447(7145):679-685
Until now, animal cloning and the production of embryonic stem cell lines by somatic cell nuclear transfer have relied on introducing nuclei into meiotic oocytes. In contrast, attempts at somatic cell nuclear transfer into fertilized interphase zygotes have failed. As a result, it has generally been assumed that unfertilized human oocytes will be required for the generation of tailored human embryonic stem cell lines from patients by somatic cell nuclear transfer. Here we report, however, that, unlike interphase zygotes, mouse zygotes temporarily arrested in mitosis can support somatic cell reprogramming, the production of embryonic stem cell lines and the full-term development of cloned animals. Thus, human zygotes and perhaps human embryonic blastomeres may be useful supplements to human oocytes for the creation of patient-derived human embryonic stem cells.  相似文献   

7.
H J Yost 《Nature》1992,357(6374):158-161
The vertebrate body is organized along three geometric axes: anterior-posterior, dorsal-ventral and left-right. Left-right axis formation, displayed in heart and gut development, is the least understood, even though it has been studied for many years. In Xenopus laevis gastrulae, a fibronectin-rich extracellular matrix is deposited on the basal surface of ectoderm cells over which cardiac and visceral primordia move during development. Here I report experiments in which localized perturbation of a small patch of extracellular matrix by microsurgery was correlated with localized randomization of left-right asymmetries. Global perturbation of the extracellular matrix by microinjection of Arg-Gly-Asp peptides or heparinase into the blastocoel resulted in global randomization of left-right asymmetries. From these observations, I suggest that left-right axial information is contained in the extracellular matrix early in development and is independently transmitted to cardiac and visceral primordia.  相似文献   

8.
The ability to discriminate between different chemical stimuli is crucial for food detection, spatial orientation and other adaptive behaviours in animals. In the nematode Caenorhabditis elegans, spatial orientation in gradients of soluble chemoattractants (chemotaxis) is controlled mainly by a single pair of chemosensory neurons. These two neurons, ASEL and ASER, are left-right homologues in terms of the disposition of their somata and processes, morphology of specialized sensory endings, synaptic partners and expression profile of many genes. However, recent gene-expression studies have revealed unexpected asymmetries between ASEL and ASER. ASEL expresses the putative receptor guanylyl cyclase genes gcy-6 and gcy-7, whereas ASER expresses gcy-5 (ref. 4). In addition, only ASEL expresses the homeobox gene lim-6, an orthologue of the human LMX1 subfamily of homeobox genes. Here we show, using laser ablation of neurons and whole-cell patch-clamp electrophysiology, that the asymmetries between ASEL and ASER extend to the functional level. ASEL is primarily sensitive to sodium, whereas ASER is primarily sensitive to chloride and potassium. Furthermore, we find that lim-6 is required for this functional asymmetry and for the ability to distinguish sodium from chloride. Thus, a homeobox gene increases the representational capacity of the nervous system by establishing asymmetric functions in a bilaterally symmetrical neuron pair.  相似文献   

9.
S C Guthrie 《Nature》1984,311(5982):149-151
It has long been recognized that cells in early embryos can communicate with each other via a direct cell-to-cell pathway, probably mediated by gap junctions. Low electrical resistance pathways, detected electrophysiologically, have been identified in all species examined so far. However, studies in various embryos on the transfer of molecules larger than small ions (for example, fluorescent dyes in the molecular weight range 350-500) have given conflicting results. In all these studies the ability to transfer dyes from cell to cell was determined without reference to the position of the injected cell in the embryo. In the experiments reported here, cell-cell transfer of the fluorescent dye, Lucifer yellow (molecular weight (Mr) 450) was re-examined in the early Xenopus laevis embryo by injecting the dye into identified cells, as the position of the injected cell within the embryo may be important. At the 32-cell stage, we found that dye transfer often occurred between animal pole blastomeres which were not sisters, as well as between sister cells, and also that Lucifer yellow was indeed transferred via gap junctions. The cell-cell transfer was not uniform within the animal pole; transfer was maximal near the dorsal side and minimal at the ventral side. This pattern may reflect differences in permeability or numbers of gap junctions across the embryo, and could be related to early events in development.  相似文献   

10.
【目的】探索拟松材线虫(Bursaphelenchus mucronatus)的繁殖能力,并对其胚胎发育过程中经历的重要阶段和卵的形态变化进行研究,了解胚胎发育和完成整个生活史所需时间,为进一步研究其生长发育并进行有效防控提供参考。【方法】分别挑取3组180条拟松材线虫雌成虫,观察记录雌虫在25 ℃条件下的产卵情况,每隔2 h统计每组线虫的累积产卵量,直至卵的数量基本不再增加。挑取尚未产卵的拟松材线虫雌虫于载玻片上,待其产卵后,将卵置于蔡司体视显微镜下观察。连续观察胚胎的发育过程并使用照片记录不同发育阶段胚胎的形态变化,记录卵发育至不同阶段所需时间。挑取约200个刚产下的拟松材线虫卵,在25 ℃条件下发育24 h后每隔4 h统计其总孵化率,直至孵化数不再增加,设置3组重复。将刚孵化的2龄幼虫接种于灰葡萄孢(Botrytis cinerea)上,分为3组,每组设置3个重复,分别在接种1、2、3 d后使用贝尔曼漏斗法收集线虫,计算混合龄线虫中每龄期线虫所占比例,计算拟松材线虫胚后发育及完成整个生活史所需时间。【结果】① 在拟松材线虫产卵能力方面,0~10 h拟松材线虫产卵总量增长较快,16 h后产卵量逐渐趋于稳定,28 h内雌虫平均累积产卵12粒/条。② 拟松材线虫的胚胎发育过程主要经历以下几个关键阶段:单胞期、双胞期、3胞期、4胞期、5胞期、8胞期、16胞期、囊胚期、利马豆期、蝌蚪期、蠕虫期、1龄幼虫(J1),至孵化为2龄幼虫(J2)时结束。③ 在胚胎发育前期,第1次卵裂发生的位置存在两种情况,即卵的1/2和1/3处。双胞发育至5胞时也存在两种不同的发育方式,一种是双胞不移动直接分裂成3胞并列排列,另外一种是细胞进行移动,3胞呈三角形排列。通过观察30个卵的第1次卵裂和100个卵双胞的发育过程发现,这些不同的发育方式均是普遍存在的。④ 在25 ℃条件下,拟松材线虫卵的累积孵化率随时间增加而增加,在32 h时达到最高(93.31%),随后逐渐趋于稳定。⑤ 在25 ℃条件下记录了拟松材线虫卵从单胞发育至各个阶段的时间,完成整个胚胎发育过程需要约28 h。2龄幼虫接种于灰葡萄孢3 d后即可获得新的2龄幼虫,因此拟松材线虫完成整个生活史只需要3 d。【结论】对拟松材线虫卵从单胞阶段直至孵化的整个胚胎发育过程进行观察发现,拟松材线虫完成胚胎发育大约需要28 h,完成整个生活史需要3 d。对拟松材线虫产卵能力和卵的孵化率进行统计,收集拟松材线虫卵和2龄幼虫的最佳时间分别为16 h和36 h。拟松材线虫胚胎发育前期,在第1次卵裂期以及由双胞期发育至5胞期的两个过程中均存在两种与同属线虫不同的发育方式。这种现象还有待进一步研究。  相似文献   

11.
12.
Tawk M  Araya C  Lyons DA  Reugels AM  Girdler GC  Bayley PR  Hyde DR  Tada M  Clarke JD 《Nature》2007,446(7137):797-800
The development of cell polarity is an essential prerequisite for tissue morphogenesis during embryogenesis, particularly in the development of epithelia. In addition, oriented cell division can have a powerful influence on tissue morphogenesis. Here we identify a novel mode of polarized cell division that generates pairs of neural progenitors with mirror-symmetric polarity in the developing zebrafish neural tube and has dramatic consequences for the organization of embryonic tissue. We show that during neural rod formation the polarity protein Pard3 is localized to the cleavage furrow of dividing progenitors, and then mirror-symmetrically inherited by the two daughter cells. This allows the daughter cells to integrate into opposite sides of the developing neural tube. Furthermore, these mirror-symmetric divisions have powerful morphogenetic influence: when forced to occur in ectopic locations during neurulation, they orchestrate the development of mirror-image pattern formation and the consequent generation of ectopic neural tubes.  相似文献   

13.
DP Denning  V Hatch  HR Horvitz 《Nature》2012,488(7410):226-230
The elimination of unnecessary or defective cells from metazoans occurs during normal development and tissue homeostasis, as well as in response to infection or cellular damage. Although many cells are removed through caspase-mediated apoptosis followed by phagocytosis by engulfing cells, other mechanisms of cell elimination occur, including the extrusion of cells from epithelia through a poorly understood, possibly caspase-independent, process. Here we identify a mechanism of cell extrusion that is caspase independent and that can eliminate a subset of the Caenorhabditis elegans cells programmed to die during embryonic development. In wild-type animals, these cells die soon after their generation through caspase-mediated apoptosis. However, in mutants lacking all four C. elegans caspase genes, these cells are eliminated by being extruded from the developing embryo into the extra-embryonic space of the egg. The shed cells show apoptosis-like cytological and morphological characteristics, indicating that apoptosis can occur in the absence of caspases in C. elegans. We describe a kinase pathway required for cell extrusion involving PAR-4, STRD-1 and MOP-25.1/-25.2, the C. elegans homologues of the mammalian tumour-suppressor kinase LKB1 and its binding partners STRADα and MO25α. The AMPK-related kinase PIG-1, a possible target of the PAR-4–STRD-1–MOP-25 kinase complex, is also required for cell shedding. PIG-1 promotes shed-cell detachment by preventing the cell-surface expression of cell-adhesion molecules. Our findings reveal a mechanism for apoptotic cell elimination that is fundamentally distinct from that of canonical programmed cell death.  相似文献   

14.
Conserved function for embryonic nodal cilia   总被引:10,自引:0,他引:10  
Essner JJ  Vogan KJ  Wagner MK  Tabin CJ  Yost HJ  Brueckner M 《Nature》2002,418(6893):37-38
How left right handedness originates in the body plan of the developing vertebrate embryo is a subject of considerable debate. In mice, a left right bias is thought to arise from a directional extracellular flow (nodal flow) that is generated by dynein-dependent rotation of monocilia on the ventral surface of the embryonic node. Here we show that the existence of node monocilia and the expression of a dynein gene that is implicated in ciliary function are conserved across a wide range of vertebrate classes, indicating that a similar ciliary mechanism may underlie the establishment of handedness in all vertebrates.  相似文献   

15.
Gou  Kemian  Shang  Lijuan  An  Xiaorong  Deng  Jixian  Chen  Yongfu  Huang  Peitang 《科学通报(英文版)》1999,44(3):236-236
Western blot analysis revealed that one IgG1 monoclonal antibody (mAb) to sp18 family membrane proteins (Mr. 14, 16 and 18 ku) of bovine sperm reacted faintly with protein bands of 14, 18, 22, 30 and 60 ku (reducing) in samples of mouse sperm. The mAb also reacted to protein of egg lysozyme. Using a laser confocal microscope, indirect immunofluorescence (IIP) showed that the sp18 antigens were present in the posterior head of murine sperm. In murine in vitro fertilization (IVF) and embryo development trails, a total of 426 oocytes from C57BL/6 and F1 hybrid strain (CD1 × C57BL/6 cross) of 12 female mice were used in 3 independent trails. After preincubating capacitated sperm with 182 μg/mL of sp18 mAb in the modified TYH IVF medium for 15-20 min, cumulus-oocyte-complexes were introduced. The fertilization rate in sp18 mAb groups was 77.1 %, which was not significantly (P > 0.05) different from the nonspecific mouse IgG (79.2%) and non-IgG (80.3 %) control groups. Fertilized oocytes had been continuously cultured in modifed CZB medium. 100%, 100% and 97.9% of 1-cell embryos developed to 2-cell stage in sp18 mAb, nonspecific mouse IgG and non-IgG group 30 h after the start of fertilization, respectively. In the nonspecific mouse IgG and non-IgG groups, 64.1 % and 64.3% of embryos developed to the 4-cell stage, respectively, but all developing eggs in sp18 mAb groups arrested development in vitro at 2-cell stage. After zonae of 2-cell blocked embryos were enzy-matically removed with 0.5% pronase, detection of sp18 antigens by IIF indicated that the fluorescence scattered on two embryonic cells. For embryos fertilized in vivo and co-cultured with 182 μg/mL sp18 mAb, the numbers of 1-cell embryos reaching the 2-cell and 4-cell stage were 95. 2% and 70. 5%, which were not significantly (P>0.05) different from the control group (92.9% and 77.9%). These results indicate that the sp18 antigens on posterior head of mouse sperm were incorporated into the egg plasma membrane during fertilization, and played an active role in development of murine preimplanta-tion embryo.  相似文献   

16.
Klimanskaya I  Chung Y  Becker S  Lu SJ  Lanza R 《Nature》2006,444(7118):481-485
The derivation of human embryonic stem (hES) cells currently requires the destruction of ex utero embryos. A previous study in mice indicates that it might be possible to generate embryonic stem (ES) cells using a single-cell biopsy similar to that used in preimplantation genetic diagnosis (PGD), which does not interfere with the embryo's developmental potential. By growing the single blastomere overnight, the resulting cells could be used for both genetic testing and stem cell derivation without affecting the clinical outcome of the procedure. Here we report a series of ten separate experiments demonstrating that hES cells can be derived from single blastomeres. In this proof-of-principle study, multiple biopsies were taken from each embryo using micromanipulation techniques and none of the biopsied embryos were allowed to develop in culture. Nineteen ES-cell-like outgrowths and two stable hES cell lines were obtained. The latter hES cell lines maintained undifferentiated proliferation for more than eight months, and showed normal karyotype and expression of markers of pluripotency, including Oct-4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, nanog and alkaline phosphatase. These cells retained the potential to form derivatives of all three embryonic germ layers both in vitro and in teratomas. The ability to create new stem cell lines and therapies without destroying embryos would address the ethical concerns of many, and allow the generation of matched tissue for children and siblings born from transferred PGD embryos.  相似文献   

17.
Grill SW  Gönczy P  Stelzer EH  Hyman AA 《Nature》2001,409(6820):630-633
Cell divisions that create daughter cells of different sizes are crucial for the generation of cell diversity during animal development. In such asymmetric divisions, the mitotic spindle must be asymmetrically positioned at the end of anaphase. The mechanisms by which cell polarity translates to asymmetric spindle positioning remain unclear. Here we examine the nature of the forces governing asymmetric spindle positioning in the single-cell-stage Caenorhabditis elegans embryo. To reveal the forces that act on each spindle pole, we removed the central spindle in living embryos either physically with an ultraviolet laser microbeam, or genetically by RNA-mediated interference of a kinesin. We show that pulling forces external to the spindle act on the two spindle poles. A stronger net force acts on the posterior pole, thereby explaining the overall posterior displacement seen in wild-type embryos. We also show that the net force acting on each spindle pole is under control of the par genes that are required for cell polarity along the anterior-posterior embryonic axis. Finally, we discuss simple mathematical models that describe the main features of spindle pole behaviour. Our work suggests a mechanism for generating asymmetry in spindle positioning by varying the net pulling force that acts on each spindle pole, thus allowing for the generation of daughter cells with different sizes.  相似文献   

18.
Kupperman E  An S  Osborne N  Waldron S  Stainier DY 《Nature》2000,406(6792):192-195
Coordinated cell migration is essential in many fundamental biological processes including embryonic development, organogenesis, wound healing and the immune response. During organogenesis, groups of cells are directed to specific locations within the embryo. Here we show that the zebrafish miles apart (mil) mutation specifically affects the migration of the heart precursors to the midline. We found that mutant cells transplanted into a wild-type embryo migrate normally and that wild-type cells in a mutant embryo fail to migrate, suggesting that mil may be involved in generating an environment permissive for migration. We isolated mil by positional cloning and show that it encodes a member of the lysosphingolipid G-protein-coupled receptor family. We also show that sphingosine-1-phosphate is a ligand for Mil, and that it activates several downstream signalling events that are not activated by the mutant alleles. These data reveal a new role for lysosphingolipids in regulating cell migration during vertebrate development and provide the first molecular clues into the fusion of the bilateral heart primordia during organogenesis of the heart.  相似文献   

19.
Suzuki H  Thiele TR  Faumont S  Ezcurra M  Lockery SR  Schafer WR 《Nature》2008,454(7200):114-117
Chemotaxis in Caenorhabditis elegans, like chemotaxis in bacteria, involves a random walk biased by the time derivative of attractant concentration, but how the derivative is computed is unknown. Laser ablations have shown that the strongest deficits in chemotaxis to salts are obtained when the ASE chemosensory neurons (ASEL and ASER) are ablated, indicating that this pair has a dominant role. Although these neurons are left-right homologues anatomically, they exhibit marked asymmetries in gene expression and ion preference. Here, using optical recordings of calcium concentration in ASE neurons in intact animals, we demonstrate an additional asymmetry: ASEL is an ON-cell, stimulated by increases in NaCl concentration, whereas ASER is an OFF-cell, stimulated by decreases in NaCl concentration. Both responses are reliable yet transient, indicating that ASE neurons report changes in concentration rather than absolute levels. Recordings from synaptic and sensory transduction mutants show that the ON-OFF asymmetry is the result of intrinsic differences between ASE neurons. Unilateral activation experiments indicate that the asymmetry extends to the level of behavioural output: ASEL lengthens bouts of forward locomotion (runs) whereas ASER promotes direction changes (turns). Notably, the input and output asymmetries of ASE neurons are precisely those of a simple yet novel neuronal motif for computing the time derivative of chemosensory information, which is the fundamental computation of C. elegans chemotaxis. Evidence for ON and OFF cells in other chemosensory networks suggests that this motif may be common in animals that navigate by taste and smell.  相似文献   

20.
Monoclonal mice generated by nuclear transfer from mature B and T donor cells   总被引:44,自引:0,他引:44  
Hochedlinger K  Jaenisch R 《Nature》2002,415(6875):1035-1038
Cloning from somatic cells is inefficient, with most clones dying during gestation. Cloning from embryonic stem (ES) cells is much more effective, suggesting that the nucleus of an embryonic cell is easier to reprogram. It is thus possible that most surviving clones are, in fact, derived from the nuclei of rare somatic stem cells present in adult tissues, rather than from the nuclei of differentiated cells, as has been assumed. Here we report the generation of monoclonal mice by nuclear transfer from mature lymphocytes. In a modified two-step cloning procedure, we established ES cells from cloned blastocysts and injected them into tetraploid blastocysts to generate mice. In this approach, the embryo is derived from the ES cells and the extra-embryonic tissues from the tetraploid host. Animals cloned from a B-cell nucleus were viable and carried fully rearranged immunoglobulin alleles in all tissues. Similarly, a mouse cloned from a T-cell nucleus carried rearranged T-cell-receptor genes in all tissues. This is an unequivocal demonstration that a terminally differentiated cell can be reprogrammed to produce an adult cloned animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号