共查询到20条相似文献,搜索用时 15 毫秒
1.
针对可靠性冗余优化问题中解的精度低及算法早熟收敛的问题,提出一种自适应的差分进化算法.该算法在原始差分进化算法的基础上修改了变异算子和交叉算子;在进化过程中,缩放因子F和交叉概率CR分别由三角函数实现自适应调节,以提高可行解的多样性及算法的收敛速度.解决了可靠性冗余优化问题解的精度低及早熟收敛问题.实验结果表明,该算法在解决可靠性冗余优化问题上不仅提高了解的精度,且具有更好的稳定性及更快的收敛速度. 相似文献
2.
《华南理工大学学报(自然科学版)》2017,(3)
多峰、高维的大规模优化问题是当前优化领域的研究热点.文中以协同进化算法为框架,提出了一种融合多种搜索策略的差分进化大规模优化算法.基于分解的思想,该算法首先利用自适应差分进化算子对子问题进行局部优化求解;然后引入基于模拟退火的随机搜索机制提高算法的全局搜索能力,并结合局部搜索链对解空间进行深度搜索.采用大规模优化标准函数对算法进行测试,结果表明,文中所提出的算法相比现有算法在平均值和最优解上均取得了更好的优化结果. 相似文献
3.
《南京理工大学学报(自然科学版)》2018,(6)
为了改善灰狼优化算法收敛速度慢、寻优精度低、易早熟等缺陷,提出1种改进的灰狼优化算法。在基本灰狼优化算法的基础上,引入差分进化机制生成1个变异种群,通过其动态缩放因子和交叉概率因子避免算法陷入局部最优。引入优胜劣汰的生物竞争淘汰策略,根据比较进化变异后狼群个体适应度值淘汰m只狼,同时随机生成与被淘汰狼数量相同的狼。采用典型的单峰与多峰函数对该文算法进行测试。仿真结果表明,该文算法的综合性能优于粒子群优化(PSO)和人工蜂群(ABC)等其他对比算法,提高了局部搜索的效率和精度。将该文算法应用于冷凝器实际控制参数整定优化问题中,并与遗传算法(GA)、PSO和工程整定(ZN)法进行比较。仿真结果表明,该文算法整定的参数输出响应的调整时间和上升时间减小,最大超调量降低且稳定性好。 相似文献
4.
差分进化算法已经应用于许多领域,但是不同变种的差分进化算法中其相关的参数影响其最终的解。如何设置最优参数来求解问题需要进一步研究。文章提出一种新的自适应差分进化算法,并选择一些标准多维多峰函数进行测试,并与其他相关的算法并行比较。实验结果表明,特别是对于标准测试函数Generalised Rosenbrock,当pcr=0.2,F=1.5时,本文提出的SinDE算法最优解的均值为32.57,相对于其他算法StdDE、DDE和JDE最优解的均值分别为62.89、219.14和254.42,显著接近最优值。 相似文献
5.
针对差分进化算法典型变异算子的局限,设计了全局加速的变异算子,进而提出全局加速的自适应改进算法.新变异算子能够均衡全局搜索与局部搜索,提高寻优效率.根据差分向量与整个种群分布范围的关系,有针对性的设定变异率值,减缓搜索范围缩小的趋势,保持较高的种群多样性.采用两区间选择策略,通过学习和比较自适应地调整交叉率,使其满足进化搜索的需要,同时提高算法的通用性.将改进算法应用于大规模可靠性问题中,实验结果表明,改进算法在解决大规模系统可靠性问题时具有更好的寻优效果. 相似文献
6.
针对标准差分进化算法解决不同问题时需要对控制参数进行不同的设置,提出了两段式差分进化算法.该算法利用正态分布随机数生成变异率的算子,并把进化过程分为2个阶段,不同阶段分别采用不同的交叉因子,根据不同的配置利用生成变异率来改善算法性能.同时为了加快局部寻优,利用拥有优势解的随机向量指引寻优方向.对一系列Benchmark... 相似文献
7.
《曲阜师范大学学报》2016,(4)
以平衡数字水印算法的鲁棒性和不可见性为主要目标,提出一种基于差分进化的DWT-SVD优化水印算法.首先,宿主图像和水印图像均经离散小波变换后生成4个不同频带子图.其次,由于人眼对4个子带变化的敏感程度不同,采用差分进化算法经变异、交叉、选择三步操作后分别获得适应各个频带子图的最优嵌入强度.之后,将混沌加密后的水印信息嵌入到宿主图像对应的奇异值中,完成水印嵌入.实验结果表明,经过一般的信号处理操作和几何攻击后,嵌入的水印图像能被完整的提取和检测,算法鲁棒性和不可见性都得到明显提高. 相似文献
8.
提出一种快速差分进化(FDE)算法.该算法采用根据上一代最优个体确定下一代搜索区间的技术不断更新和缩小搜索区域,从而加快收敛速率,提高收敛精度和鲁棒性.通过对21个极值函数仿真试验分析表明,该算法在问题维数多时,极值函数的收敛速率、收敛鲁棒性和收敛精度明显优于其他算法,且种群初始化形式不影响算法的收敛性能. 相似文献
9.
一般的神经网络的结构是固定的,在实际应用中容易造成冗余连接和高计算成本。该文采用了协同量子差分进化算法(cooperative quantum differential evolution algo-rithm,CQGADE)以同时优化神经网络的结构和参数,即采用量子遗传算法(quantum genetic algorithm,QGA)来优化神经网络的结构和隐层节点数,采用差分算法来优化神经网络的权值。训练后的神经网络的连接开关能有效删除冗余连接,算法的量子概率幅编码和协同机制可以提高神经网络的学习效率、逼近精度和泛化能力。仿真实验结果表明:用训练后的神经网络预测太阳黑子和蒸汽透平流量具有更好的预测精度和鲁棒性。 相似文献
10.
针对差分进化算法在处理函数优化问题时存在的收敛速度较慢和过早收敛的问题,提出了一种动态参数调整的多策略差分进化算法.先将种群随机分为3个独立的子种群,分别采用3种不同的变异策略来避免种群陷入局部最优,并通过动态参数调整机制提高算法的收敛性能.经过一定代数的进化后,将种群中的优秀个体进行择优保留.采用CEC2005的25个标准测试函数对算法进行仿真,实验结果表明,新算法能够有效避免过早收敛,具有较好的优化性能. 相似文献
11.
《山东科技大学学报(自然科学版)》2016,(1)
在差分进化算法的基础上,提出一种基于多准则寻优策略的改进差分进化算法。该算法可以动态调整变异因子和交叉概率,基于文中提出的多准则寻优策略,通过个体适应度、个体间距离等评价指标判断个体的优劣程度,并且可以降低种群的高密度程度,增强种群多样性。这种判断机制可以有效避免种群过早收敛,易陷入局部最优的风险。通过具体的测试函数对算法进行测试,并与标准差分进化算法进行比较,结果显示算法寻优效果较好,可以较快地得到全局最优解。 相似文献
12.
《内蒙古师范大学学报(自然科学版)》2017,(6)
针对函数优化问题求解算法存在速度慢、精度低等问题,提出一种函数优化问题求解的自适应差分进化算法.该算法对变异算子和交叉算子进行改进,增强了其寻优能力.对经典的函数优化问题进行仿真测试,结果表明,自适应差分进化算法全局搜索能力强,收敛速度快,可以获得更高精度的函数优化问题解. 相似文献
13.
多目标优化问题的差分进化算法研究 总被引:3,自引:0,他引:3
为保持所求得的多目标优化问题Pareto最优解的多样性,提出了一种精英保留和根据目标函数值进行排序的多目标优化差分进化算法.对排序策略中目标函数的选择方式进行了分析和比较,并提出了一种确定进化过程中求得的精英解是否进入Pareto最优解集的阈值确定方法.用多个经典测试函数进行了实验分析,并与NSGA-Ⅱ算法进行了比较.实验结果表明,该方法收敛到问题的Pareto前沿效果良好,能有效保持所求得的Pareto最优解的多样性. 相似文献
14.
基于并行优进策略的差分进化算法 总被引:1,自引:0,他引:1
差分进化算法是一种新颖的进化计算技术,为减少用户选择算法控制参数的盲目性和提高算法收敛速度,设计了一种基于并行优进策略的差分进化算法(DEPES算法).算法随着搜索过程的进行随机动态调整缩放因子和选取差分进化模式;在进行差分操作的并行运算过程中,利用当前代最优个体产生新的试验向量参与竞争选择过程.几个复杂函数的数值实验结果表明,DEPES算法寻优效率高、收敛速度快、对初值具有很强的鲁棒性、对维数具有较好的适应性,尤其是具有避免局部极小的能力,其优化性能优于标准DE算法. 相似文献
15.
随机变异差分进化算法 总被引:2,自引:0,他引:2
为了避免差分进化算法陷入早熟,提出了一种随机变异差分进化算法(RMDE).这种算法改进了差分进化算法的变异操作,采用随机选择的方式进行变异和扰动操作,增加种群的多样性,平衡算法的局部搜索和全局搜索.对几种标准的函数进行了测试,结果表明RMDE算法优于其他5种算法.并将该算法应用于13机组的电力系统经济调度问题,与文献其他算法相比,RMDE算法取得的结果优于最近文献所报道的结果. 相似文献
16.
17.
[目的]社会蜘蛛群优化算法 (SSO) 是一种新颖的元启发式优化算法,自从它被提出之后就受到该领域学者的广泛关注,并且也被成功应用到许多领域.但是由于社会蜘蛛群优化算法还处在算法的研究初期,该算法的收敛速度与收敛精度还需要进一步提高.[方法]将差分进化算子引入到社会蜘蛛群优化算法(SSO-DM)中,并将改进的算法应用于函数优化问题中,通过5个标准测试函数来验证基于差分进化算子的社会蜘蛛群优化算法(SSO-DM)的优化性能.[结果]差分进化算子增强了社会蜘蛛群优化算法的收敛速度与收敛精度.[结论]本研究中所提出的算法能够获得精确解,并且它也具有较快的收敛速度和较高的算法稳定性. 相似文献
18.
基于差分进化算子变异的中心引力优化算法 总被引:1,自引:0,他引:1
针对中心引力优化算法易陷入局部最优这一不足,加强算法的全局寻优能力,提出一种改进的中心引力优化算法,根据差分算法本身的固有特性,通过引入差分进化算子对当前粒子位置的分量进行变异,促使算法摆脱局部最优,增强算法的全局收敛性.最后选取5个经典函数对算法进行测试,并与其他算法进行比较分析,结果证明算法的精度得到了明显提高,从而验证了该算法的有效性和可行性. 相似文献
19.
基于差分进化算法的单阶段投资组合优化 总被引:1,自引:1,他引:0
在建立的单阶段资产投资组合数学模型的基础上,给出一种基于风险控制的差分进化算法的求解方法.实验结果表明,该算法在此类组合优化中是高效可靠的,且易于实现. 相似文献
20.
为进一步提升图分类算法的性能和稳健性,提出了差分进化算法优化的图注意力网络集成.首先,通过划分原始样本让不同的基学习器关注数据的不同区域;其次,利用差分进化算法良好的搜索能力,以分类器集成的分类错误率为目标函数优化基学习器的权重向量;最后,在权重向量基础上综合各基学习器的输出作为分类器集成的总体输出.实验引入引文数据集... 相似文献