首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 针对矿井通风入口风流季节性差别大的现象,对不同季节通风巷道风流温变规律进行现场测试,建立巷道围岩-风流换热的数学物理模型,数值模拟通风风流与围岩的换热特性。研究结果表明,风流在煤巷中流动过程中不断与围岩进行热交换,进而导致风流温度不断升高,但在工作面段风流升温缓慢,数值计算结果与实测结果相吻合。不同季节通风巷道内风流升温效果差别明显,入口风流温度越低,风流在巷道内流动相同距离时,温度越低,但温升越大。  相似文献   

2.
深井工作面高温热害严重影响着煤矿的安全生产,而围岩散热是高温热害的主要热源体。为了探索高温围岩散热对巷道内通风风流温度的影响规律,以淮南矿业集团某高温工作面为工程背景,采用理论分析和数值模拟方法对工作面及两侧巷道内风流的温度场分布规律进行了研究,并与现场实测结果进行了对比分析。结果表明:1)随着巷道走向的延伸,巷道内风流的温度以e指数的形式呈增高趋势,巷道越长,在其末端风流温度越接近巷道围岩温度;2)在工作面与运输巷和轨道巷相交区域,由于风流涡旋效应,该区域风流热量不易散出,形成风流温度场与速度场的异常区域,也是回采工作面高温热害治理的关键区域。  相似文献   

3.
针对矿井井下风速传感器所测得的风速不能反映流经此巷道风流的真实风速,且风速传感器的位置不同其所测得的风速值与真实风速之间的误差也不同.采用数学理论及相关推理方法,以圆形巷道为例,参考流体在圆形管道中的运动规律,分别对流体层流和紊流的运动形式进行分析.研究结果表明:巷道截面中某一点风速与此巷道中的平均风速之间存在着一定的函数关系.  相似文献   

4.
巷道风流中瓦斯逆流现象的数值模拟   总被引:1,自引:0,他引:1  
根据计算流体动力学理论,研究巷道在不同风速、不同倾角下的瓦斯逆流现象;分析巷道风流中瓦斯逆流区的长度、浓度分布以及瓦斯层厚度的变化;得出倾斜巷道中瓦斯逆流的一般规律.结果表明:在下行通风风速较小的情况下,当瓦斯从顶板涌出时,巷道中将出现明显的瓦斯逆流现象;在发生瓦斯逆流时,风速越高,瓦斯逆流的区域越小,瓦斯层的厚度越薄、长度越短;下行通风有利于空气和瓦斯的混合,且倾角越大,瓦斯与空气混合的能力越强,顶板逆流瓦斯层的范围越小.  相似文献   

5.
为了对油型气涌出条件下掘进巷道局部通风参数进行优化,解决油型气涌出造成的掘进巷道局部瓦斯超限问题,采用仿真软件ANSYS对掘进巷道压入式通风进行数值模拟,运用压入式通风掘进工作面风流流场结构特点,对油型气涌出条件下掘进巷道中CH4浓度分布进行研究,分析了风筒进风速度分别为8,10,12 m/s以及风筒直径分别为0.6,0.8,1 m时,油型气主要成分CH4在巷道中的扩散规律。研究表明,当风筒风速由8 m/s增加到12 m/s,风筒直径由0.6 m增加为1 m时,油型气与巷道内风流混合更加充分,高浓度CH4区域更小,工作面回风瓦斯浓度在0.5%左右,符合《煤矿安全规程》规定。由此可见,掘进巷道有油型气涌出时,根据工作面实际情况适当的增加风速,增大风筒直径可以有效地排出底板油型气,有效预防局部瓦斯超限,改善掘进工作面作业环境。  相似文献   

6.
为深入研究综掘面粉尘运移规律,根据气固相两相流理论,采用离散相模型对综掘工作面粉尘运移规律进行了数值模拟.得出粉尘质量浓度分布存在3个区域:射流区、回流区及涡流区,粉尘质量浓度从掘进面到巷道出口沿程上总体上先快速下降,然后缓慢下降,最终趋于稳定,在掘进机前出现质量浓度峰值.通过分析掘进机对风流流场及粉尘质量浓度分布的影响,得出了掘进机影响下的粉尘分布规律;通过现场实测与模拟结果的对比分析,验证了数值模拟的可靠性,得出了压入式通风风流作用下的粉尘运移规律,为综掘巷道安全、可靠、有效的粉尘防控技术的研究和粉尘质量浓度的降低提供了科学依据.  相似文献   

7.
针对大倾角综放工作面倾角大、风流运动多变导致通风系统复杂、最优排尘风速难确定等问题,基于气固两相流动理论,建立大倾角综放工作面仿真模型.通过FLUENT软件进行数值模拟,研究了不同通风方式下综放工作面风流运动规律和粉尘分布、上行通风与下行通风的降尘机理及大倾角综放工作面的最优排尘风速.结果表明:上行通风时,人行道空间的沿程粉尘质量浓度为1200~1600mg/m3;下行通风时,人行道空间的沿程粉尘质量浓度为460~600mg/m3.下行通风方式更加适用于大倾角综放工作面.最优排尘风速为25~28m/s,入口风速不宜超过30m/s.对比工作面现场实测粉尘质量浓度与数值模拟分析可知,二者结果较为一致,验证了数值模拟结果的可靠性与准确性.研究结果可为大倾角综放工作面采取有针对性的防尘措施提供理论指导.  相似文献   

8.
通过一定初始浓度的氡在0~14 400 s内累积衰变产生的氡子体?潜能浓度的理论计算值,建立氡子体?潜能浓度与氡浓度和累积衰变时间之间的简化数学关系;依据独头巷道内氡及氡子体的来源,分别建立压入式通风方式下巷道内通风风流中氡浓度与氡子体?潜能浓度的数学计算模型;针对具体的独头巷道,研究不同通风量、岩壁氡析出率和有无矿堆情况下整个巷道内氡浓度和氡子体?潜能浓度分布规律。研究结果表明:压入通风方式的独头巷道内,氡浓度及氡子体?潜能浓度均随着岩壁氡析出率和风流流动距离的增大而增大,随着通风风量的增大而减小;工作面矿堆析出的氡能迅速导致风流中氡浓度的增大,而其产生的氡子体?潜能浓度随着风流流动距离增加逐渐增大;  相似文献   

9.
为了掌握粉尘在胶带输送巷道内的分布及运移规律,确定影响粉尘分布的关键因素,选取某矿井胶带输送机大巷包含转载点节段为研究对象,建立巷道及胶带输送机三维实体模型,根据气固两相流理论,运用DPM模型,对不同边界条件下的粉尘分布运移规律进行数值模拟研究。结果表明,胶带输送机的运行速度、巷道平均风速以及转载点的存在都对粉尘分布产生影响。其中,带速的提高会导致巷道沿程粉尘浓度升高,在带速为3.5 m/s时,人行道中线与巷道中线最高粉尘浓度分别达到27.5 mg/m~3与150 mg/m~3;转载点的存在会使其后方粉尘浓度上升速率变大;适当提高巷道平均风速有利于降低沿程粉尘浓度,风速为5 m/s时,人行道中线与巷道中线最高粉尘浓度分别降为7.5 mg/m~3和40 mg/m~3。  相似文献   

10.
皮带运输巷道粉尘质量浓度分布规律的数值模拟   总被引:2,自引:0,他引:2  
为了掌握皮带运输巷道粉尘质量浓度的分布规律,获取通风除尘设计的合理参数,以西石门铁矿提升车间系统40#皮带运输平巷为研究背景,依据气固两相流理论,运用计算流体力学的离散相模型对皮带运输巷道粉尘质量浓度进行数值模拟,并与现场实测的粉尘质量浓度分布情况进行对比分析,模拟结果与实测数据基本吻合.研究表明,运用欧拉--拉格朗日法对皮带运输巷道粉尘质量浓度分布规律进行模拟是可行的.在通风除尘设计中,当巷道风速为3 m.s-1时,排尘效果最好,粉尘质量浓度整体保持在3 mg.m-3以下;皮带运输速度为2.5 m.s-1时粉尘质量浓度较低;定期进行壁面洒水也能在一定程度上实现降尘目标.  相似文献   

11.
针对目前矿井风流参数测试无法获得巷道的平均风速,存在不能全面监测通风网络的全部信息、监测数据达不到准确测定点、出现监测盲区等问题,结合矿井通风系统的经济型和合理性要求,重点研究风速传感器的最少监测数量和最优安装位置.采用可变模糊集理论分析影响风速传感器选址的指标因素,通过三交河煤矿为例进行现场实验和分析,建立风速传感器可变模糊优选模型.研究结果表明:通过计算相对优属度得出各分支安装风速传感器的合理权重,利用宽度优先搜索算法求出通风网络最小生成树,寻根法确定其基本回路,从而快速准确地确定出风速传感器具体安装的回路分支,得到风速传感器最优选址方案.研究结论为实现通风网路风量无盲区实时动态监测和模拟创造条件.  相似文献   

12.
建立了铁合金车间自然通风三维k~ε模型,在动量方程中考虑浮力影响,利用Fluent软件模拟了车间内风流组织和矿热炉塌料事故下的CO非稳态扩散.结果表明:各呼吸面的风流结构可分为主流区、涡流区和停滞区,在烟囱附近存在涡流分布,在主流出口边壁处存在停滞区;分析了不同风向和风速下不同通风时刻CO的迁移过程和分布规律,CO浓度在主流卷吸作用下从涡流中心向周围逐渐降低;通过回归分析得到了通风时间跟风速呈指数下降关系,为铁合金车间通风设计提供理论依据和参考.  相似文献   

13.
为了改善胶带输送巷道粉尘浓度超标的现状,探索影响粉尘浓度分布的主要因素,根据相似原理,结合气固两相流的运动方程,导出了模拟胶带输送巷道粉尘运动的相似准则数,建立了胶带输送巷道相似模型,运用计算流体力学的Fluent软件对胶带输送巷道相似模型粉尘浓度分布进行数值模拟,并与相似实验数据对比分析,模拟结果与实验数据基本吻合.研究结果表明,巷道平均风速及胶带运行速度是影响粉尘浓度分布的两大主要因素.巷道平均风速为0.15~0.60m·s-1时,风速越大,粉尘浓度越低.胶带运行速度为1~2.5m·s-1时,运行速度越大,粉尘浓度越高.  相似文献   

14.
巷道断面上各点风速不同,每点的瞬时风速又具有随机脉动性,准确获取一点的风速时均值并将其转换为断面的平均风速值是矿井通风领域中的一项技术难题。根据巷道湍流定常非均匀特征,建立了巷道断面上任一点时均风速u和断面平均风速V的统计测量模型,并对u与V之间的转换机制进行了理论和实验研究。理论研究表明,湍流充分发展的圆形巷道内,u与V之间呈非线性正相关,但在很宽的风速变化范围内,可近似为正比关系。实验结果表明,在井下常见风速范围内,湍流非充分发展的非圆巷道断面无量纲速度场结构近似恒定,u与V之间亦呈正比关系,比值k为常数,亦即无量纲速度场结构恒定时,系数k的大小和分布也是恒定的。k值与风速大小无关,仅取决于巷道的方向、断面形状、断面积以及支护方式等边界条件的变化。只要获得巷道断面k的分布以及任一点的时均风速u就可获得巷道断面的平均风速V。根据统计测量模型给出了恒定速度场结构下k值的首次标定准则,提出单点瞬时风速的时均化原则为时间平均尺度大于湍流各态遍历假设。新型智能传感器应提高数据采集频率以满足风速时均化要求。  相似文献   

15.
为更好地评价井下通风网络,优化矿井通风系统.将示踪气体技术应用于特定复杂的通风网络,并对示踪气体在巷道内的移流扩散规律进行模拟计算.通过对兴阜矿示踪气体浓度实测数据与模拟数据的对比,对巷道理论计算风速和弥散系数进行有效修正,使推导出的在多条巷道内示踪气体浓度的理论计算公式及结果更加符合井下实际情况.在此基础上进一步分析检查实验矿井通风系统中存在的问题,明确漏风区域的具体位置,为通风系统优化及井下工作环境安全规划提供可靠的理论根据.  相似文献   

16.
为了准确掌握掘进工作面涌出瓦斯的分布状况和瓦斯积聚的规律,利用计算流体力学(CFD)软件Fluent对局部通风掘进工作面的风流流场进行了数值模拟,建立了用于工作面流场模拟的几何模型,确定了通风流场的数学模型,并与试验结果相对比验证了模拟结果的准确性。研究表明:使用RNG k-ε双方程湍流模型对工作面的流场进行模拟,能够得到比较可靠的流场,在此基础上采用瓦斯源对局部通风掘进工作面的瓦斯分布进行了数值模拟,风筒布置于巷道顶部时瓦斯主要积聚于巷道两帮下部,回风瓦斯浓度模拟结果与理论计算值一致。  相似文献   

17.
为提高巷道"U"型钢支护的整体性效果,及研究在偏载下支架的内力分布规律和稳定性以利于优化支架分布.基于林南仓矿工程背景,采用数值分析方法,对支架的轴力、剪力、弯矩和位移沿巷道掘进方向的分布规律进行数值模拟.研究结果表明:轴力在支架腿处最大,顶处最小,剪力和弯矩在顶处、腿处和拱部部分区域较大;沿巷道方向,轴力整体比较平稳,在每个开挖步内有所差距,支架剪力和弯矩在总开挖巷道内逐渐减小;当偏压0.9 MPa时对围岩和支架的影响较大,围岩出现较大的塑性范围.支架内力在第一个开挖步内出现一个数量级的变化,应加强支架分布集度.  相似文献   

18.
巷道型采场爆破粉尘质量浓度分布及变化规律的数值模拟   总被引:1,自引:0,他引:1  
为掌握采场爆破作业时粉尘质量浓度的分布及变化规律,获取通风除尘设计的合理参数,以李楼铁矿-200m水平44号采场为研究背景,依据气固两相流理论,运用Fluent软件对巷道型采场爆破粉尘质量浓度分布规律进行数值模拟,并与现场实测数据进行对比分析.研究结果表明:模拟结果与实测数据基本一致.在采场进路断面方向,粉尘质量浓度呈由左至右、由下至上降低的分布规律;在轴线方向,粉尘质量浓度呈中间高,两侧低的分布态势;当联络巷风速为2 m/s时,采场空间内粉尘沉降及排出效果较好;此外,还可通过加强壁面洒水及安装压入式通风等措施改善粉尘的沉降及排出效果.  相似文献   

19.
为有效利用巷道内排除的热空气,以大隆矿区矿井通风巷道为例,采用分离求解方法,对巷道围岩一空气换热系统进行三维数值模拟,分析巷道空气出口平均温度71P、巷道围岩与巷道内空气的平均总传热系数K、巷道空气平均出口热流密度q、风速口的变化规律。结果表明:v在0.2~1.0m/s时,耳较大;v越小,砟越接近于围岩初始温度。v在5.0~7.0m/s内,对K影响不大;当v〈5.0m/s时,K呈线性规律降低。v在0.2~5.0m/s时,q呈二次曲线渐变过程。丁随着”的减小、巷道长度的增加而增加。该结果为进一步研究围岩与空气的换热问题奠定了基础。  相似文献   

20.
基于相似理论,应用方程分析法推导出矿井热害治理协同地热开采相似模拟所需满足的相似准则,得出缩尺模型与原模型之间各参数相似比尺。利用COMSOL数值软件建立2种尺寸模型分别求解,验证建立的相似准则准确性。按1:100的几何缩尺比例搭建相似模拟实验系统,该系统包括巷道通风系统、地热开采系统和监测系统,用于研究矿井岩层地热开采过程中采热流体流动传热规律以及地热开采对通风巷道热环境的作用机制。研究结果表明:岩层注水采热过程中逐渐降低巷道围岩温度,减小巷道内风流升温幅度。当岩层注水54 min时,巷道内风流升温幅度比不注水时降低1.5℃。采热井负压抽水采热促进岩层内热传递,使岩层降温区域加速扩大。注入井注水采热对巷道风流温度的影响可以分为通风换热、围岩快速冷却、风流温度稳定3个阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号