首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以筛选分离得到的好氧反硝化菌HG-7为研究对象, 经过16S rRNA同源性分析, 初步鉴定该菌株为假单胞菌属(Pseudomonas sp.)。对菌株HG-7反硝化功能基因的扩增结果表明, 菌体HG-7内存在好氧反硝化功能基因napA和nirK, 证实该细菌为好氧反硝化细菌。对菌株的脱氮特性和影响因素的研究表明, 以硝酸盐氮为氮源时, 菌株的最适碳源为乙酸钠和丁二酸钠, 最佳C/N比为6~10, 最适宜的温度范围为26~30℃。在上述条件下, 菌株HG-7的好氧反硝化活性较高, 48小时内对100 mg/L硝酸盐氮的去除率可达98%, 且在反应过程中亚硝酸盐氮积累量较低。以亚硝酸氮为唯一氮源时, 低浓度条件下可实现100%的氮素去除率; 高浓度条件下, 脱氮速率则受到明显的抑制, 对91.4 mg/L的亚硝酸盐氮氮去除率约为40%。因此, 将该菌株应用于废水的脱氮处理, 可实现氮素的有效去除, 具有潜在的应用价值。  相似文献   

2.
生物反硝化法是去除水体中硝酸盐的有效方法。鉴于生物反硝化过程中有机碳源不足的问题,选择甲醇、乙醇、葡萄糖作为反硝化碳源,研究它们对反硝化的促进作用;同时研究C/N比以及温度对反硝化过程的影响。结果显示:甲醇、乙醇和葡萄糖作为反硝化碳源时,均可获得较高的硝酸盐氮去除率。以乙醇为碳源时,反硝化速率进行的最快,硝酸盐氮去除率高,中间副产物亚硝酸盐氮和氨氮积累少,是最优的反硝化碳源;C/N比对反硝化过程影响显著,C/N比越高,脱氮速率越快;另外温度对反硝化也有着重要的影响,在25℃、35℃时的脱氮效果远好于10℃时的脱氮效果。  相似文献   

3.
反硝化细菌Klebsiella sp.DB-1的分离鉴定与活性研究   总被引:1,自引:0,他引:1  
从巢湖芦苇湿地分离筛选出一株异养反硝化细菌,对其进行鉴定,并进行了反硝化活性研究,目的是为了研究地下水硝酸盐污染的生物修复机理.用酒石酸钾钠培养基从湿地土壤中富集并分离出反硝化细菌,对该菌株进行了16SrDNA鉴定及系统发育分析,并研究了单一碳源、碳氮比对其反硝化活性的影响,以及其对水中硝酸盐氮含量的适应性.分离出了一株异养反硝化细菌,具有较高的反硝化活性,命名为Klebsiellasp.DB-1,革兰氏阴性球形,兼性厌氧,16SrDNA序列分析表明,该菌株与Klebsiella sp.的相似性为99.6%以上;该菌株利用乙酸钠为碳源,采用碳氮比(C/N)为3,水中初始硝酸盐氮含量在100mg/L以内,120h几乎完全去除水中硝酸盐氮.菌株Klebsiellasp.DB-1为异养反硝化细菌,具有较广的碳源谱,能够有效地去除水中硝酸盐氮.  相似文献   

4.
以硫化亚铁(FeS)为电子供体的自养反硝化反应对水体中硝酸盐的去除有重要贡献.以菌株Thiobacillus (T.) denitrificansATCC 25259为对象,首次研究了脱氮硫杆菌以FeS为底物的自养反硝化过程.结果表明,以FeS作为唯一电子供体时,T. denitrificans可以将NO-3-N(30 mg·L-1)彻底还原为N2.同时,FeS中的硫元素经自养反硝化过程转化为SO2-4,而铁元素与培养基中PO3-4反应生成沉淀物Fe3(PO4)2·8H2O.通过对相关数据拟合发现自养反硝化过程遵循零级反应动力学(R2>0.93),随着FeS加入量的增大,NO-3和NO-2的还原速率均增大,但NO-3的还原速率增大更多,使中间产物NO-2的累积量增大.  相似文献   

5.
生物脱氮菌种筛选及条件选择的研究   总被引:5,自引:0,他引:5  
经对以甲醇、乙醇、乙酸钠或酒石酸钾钠等不同碳源进行土壤反硝化细菌富集培养,从以乙酸纳为碳源的富集培养物中分离出16株具有脱氮活性的细菌,并从中筛选出三株脱氮活性较高的菌株(分别编号为B5、B9和B13,下同),经试验选出其生物脱氮最佳条件.在以乙酸盐为碳源和电子供体;NO-3-N100mg/L;起始pH7.0±;温度28℃和厌气条件下,脱氮速率为40~41mgNO-3-N/L·h.  相似文献   

6.
采用SBR反应器,以硝酸钾为氮源驯化活性污泥,筛选分离出两株好氧反硝化菌X1和X2进行生理特性、脱氮性能及N2O逸出量的研究.结果表明:两菌株均能在完全好氧的条件下(DO2mg/L),利用KNO3进行反硝化,总无机氮去除率分别为72.1%和78.9%;以KNO2为氮源时,菌株X1的总无机氮去除率仅为16%,而菌株X2的总无机氮去除率则达到73%;好氧反硝化过程中菌株X1的N2O逸出量高于菌株X2,这与硝酸盐的积累相关;碳源种类对菌株N2O逸出量有较大影响,琥珀酸钠做碳源时N2O逸出量最高.  相似文献   

7.
针对城镇污水处理中碳源不足影响系统脱氮能力的问题,分别以乙酸钠、葡萄糖、甲醇作为外源性碳源,考察各碳源对活性污泥脱氮能力的影响。研究结果表明,在乙酸钠投加量分别为50、100、200mg/L条件下,NO3--N去除率分别为68.8%、85.8%、100%;在葡萄糖投加量为50、100、200mg/L的条件下NO3--N去除率分别为47.3%、64.3%、76.2%;甲醇有一定的滞后性,在投加初期对反硝化能力并没有明显的促进作用。由试验结果可知,乙酸钠可以作为高效外源性碳源用作城镇污水脱氮除磷。  相似文献   

8.
高效反硝化菌强化固相碳源生物脱氮特性研究   总被引:1,自引:0,他引:1  
以聚丁二酸丁二醇酯(PBS)作为固相可生物降解模式碳源的生物填充床,针对分离获得的高效反硝化菌开展强化生物脱氮的特性研究,并利用荧光定量PCR解析反应器的微生物群落结构。结果表明,投加反硝化菌(W14)可以明显地提高反硝化脱氮效率,当水力停留时间(HRT)为0.5 h时,反硝化菌强化脱氮生物反应器的脱氮效率达到90%以上,且能有效地降低出水残余的DOC浓度。荧光定量PCR结果表明,高效反硝化菌投加强化能够增加nir S基因丰度和比例,较好地解释了不同接种生物反应器的脱氮效果差异,即反硝化菌的强化作用能有效增加反硝化菌数量并强化脱氮效果。  相似文献   

9.
污水生物脱氮方法研究   总被引:1,自引:0,他引:1  
根据生物脱氮的基本原理和环境条件初步探讨了通过严格控制DO、污泥龄、温度、pH值、有机碳源等参数和条件来提高生物脱氮效果,并分析了形成短程硝化—反硝化和全程自养脱氮后带来的显著优点。  相似文献   

10.
SBR是序批式活性污泥法的简称, SBR系统行运行模式不同,脱氮除磷效果会发生变化。SBR系统氨氮硝化过程在好氧阶段进行,脱氮过程主要在缺氧阶段进行。除少数细菌能进行自养反硝化,大部分反硝化细菌进行反硝化都是进行异养反硝化。经研究发现SBR运行过程中TN浓度和COD浓度具有相关性,COD和TN浓度之间存在三阶函数关系,本实验反硝化速率为1.2mg/L。  相似文献   

11.
从活性污泥中分离出一株好氧耐盐反硝化菌YFX-6,耐盐度10%.经生理生化鉴定和16S rDNA测序,鉴定出菌株YFX-6属于Halomonas sp.考察了不同C/N质量浓度比、溶解氧、接种量、处理时间对菌株YFX-6在粮果实际废水中反硝化脱氮效果的研究.随着C/N质量浓度比的不断增加,菌株YFX-6的反硝化脱氮效果先逐渐增强后又减弱;随着溶解氧、处理时间和接种量的不断增加,菌株YFX-6的脱氮效果逐渐增强后趋于稳定.初始硝态氮质量浓度约为108.5 mg/L,氯化钠质量浓度为10 mg/L,C/N质量浓度比为8,溶解氧为3.5 mg/L,接种量所占体积分数为20%,处理16 h时,硝态氮去除率为98.69%.因此,筛选出的一株好养耐盐的异氧反硝化菌可以在上述条件下表现出良好的脱氮性能.  相似文献   

12.
刘海珍  尚焦锋 《河南科学》2011,29(9):1117-1121
采用有效容积为330L的氧化沟模型,以城市污水为研究对象,研究了Orbal氧化沟中的同时硝化反硝化生物脱氮现象.实验结果表明,在不投加外碳源和不设硝化液内回流的条件下,通过控制氧化沟溶解氧浓度及分布,可以实现氧化沟外沟道内的同时硝化反硝化生物脱氮,TN去除率最高可达86%.分析认为,溶解氧浓度及分布是氧化沟同时硝化反硝...  相似文献   

13.
采用16S rDNA序列分析对菌株LZX301进行了初步鉴定,在150 r/m摇瓶好氧培养,探讨了碳源及盐度对菌株好氧反硝化特性的影响. 结果表明,该菌株16S rDNA序列与Pseudomonas stutzeri ATTC 17594(AY905607.1)等3株施氏假单胞菌序列相似度为99%,系统发育树分析显示菌株LZX301与P.stutzeri 的关系比同属的P.aeruginosa 和P.putida更近,因此初步确定菌株LZX301为Pseudomonas stutzeri. 培养液初始含7 mg/L亚硝酸盐和28 mg/L硝酸盐、C/N比为10:1条件下,以葡萄糖、乙酸钠和蔗糖为碳源时无机氮去除率分别为79.1%、67.9%和38.8%,氨氮积累量分别为1.978、1.224、0.727 mg/L. 以葡萄糖为唯一碳源时,在5、15、25等3个盐度下无机氮总去除率分别为73.2%、85.8%和78.7%,其中硝酸盐去除率分别为89.8%、86.1%和76.5%,亚硝酸盐去除率分别为36.2%、94.7%和96.4%,氨氮质量浓度分别为2.117、0.691、0.595 mg/L. 研究结果表明菌株LZX301在盐度5~25 范围内具有较强的好氧反硝化能力,以葡萄糖为碳源脱氮效果最好,对该菌株的应用具有指导意义.  相似文献   

14.
从膜生物反应器中分离出一株异养型高效脱氮细菌,该菌为革兰氏阴性杆菌,命名为HNR.经16S rRNA测序,该菌株属于Acinetobactersp.菌属.以氯化铵为惟一氮源,探讨了不同碳源、pH值、温度及碳与氮质量分数之比w(C/N)对HNR菌株脱氮性能的影响.实验结果表明:以葡萄糖为碳源、pH值为8、温度为30℃、w(C/N)为10时,HNR具有最佳脱氮效果.在好氧条件下,当氨氮初始质量浓度为120 mg/L时,经过72 h的连续培养,其氨氮和总氮的去除率分别达92.5%和89.1%.通过气相色谱能检测到N2,但检测不到N2O.HNR不具有明显的好氧反硝化性能,表明HNR的脱氮途径可能与已报道过的异养硝化好氧反硝化脱氮途径有所不同.  相似文献   

15.
从水产养殖生物絮团中分离出一株具有异养硝化-好氧反硝化功能的菌株L3,研究该菌株的生长影响因子及其脱氮性能。对菌株L3进行16S rRNA基因同源性分析,表明此株菌为假单胞菌。研究表明,菌株L3生长的最佳pH为6~8,最佳温度范围为25~35℃,最适宜碳源为丁二酸钠,最佳C/N为10~15,且菌株能耐受高浓度氨氮负荷。通过研究菌株异养硝化-好氧反硝化特性发现,菌株优先利用氨氮进行异养硝化并具有良好的好氧脱氮效果。  相似文献   

16.
异养硝化-好氧反硝化细菌的筛选及其脱氮性能研究   总被引:1,自引:0,他引:1  
为寻求高效水体脱氮手段,从龙泓涧梯级塘底泥中筛选出以Pseudomonas菌属为主、具有异养硝化-好氧反硝化功能菌群,将其命名为LHJ-1.异养硝化和好氧反硝化性能研究结果表明,菌群LHJ-1具有明显的异养硝化功能,对NH_4~+-N和TOC利用率分别达99.90%和56.69%,且表现出较高的反硝化能力,对NO_3~--N和NO_2~--N的转化率分别为92.46%和89.67%.由不同环境因素(碳氮比、碳源、pH值和溶解氧)影响实验可知,多种环境因子均对菌群LHJ-1脱氮效果具有较大影响,因此在实际应用中需考察不同环境因子,以找出最佳生长条件,获得最大脱氮效率.异养硝化-好氧反硝化菌群LHJ-1的筛选在水体脱氮除碳中具有广阔的应用前景.  相似文献   

17.
硫自养反硝化反应器脱氮特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以硫自养反硝化反应器脱氮为研究体系,对其反硝化特性进行研究。结果表明,反应器完成挂膜后,15天可完成对反应器内硫自养菌的驯化,相比于其他的硫自养反硝化反应器,所用时间较短,进水pH值为8,t(HRT)为4.3h,进水硝酸盐质量浓度为70 mg/L时,脱氮率可稳定在90%以上,反硝化速率达18.5mg/(L·h)(以N元素计);反应器上、中、下部均有脱氮硫杆菌,且中、下部较多。反应器的最佳进水硝酸盐质量浓度为50mg/L,最适温度为30~35℃,最佳进水pH值为7~8,硝酸盐去除率可达90%以上。  相似文献   

18.
碳源对地下渗滤系统脱氮及产生N2O的影响   总被引:1,自引:0,他引:1  
生活污水经沉淀预处理后投配到地下污水渗滤系统(SWIS)中进行深度脱氮处理.考察了在SWIS基质中添加有机碳源对脱氮效果、脱氮微生物活性及N2O产生量和转化率的影响.研究结果表明:碳源的添加有利于促进微生物的反硝化作用,但过量添加会促进其他菌群的生长而抑制脱氮菌群的优势活性,从而削弱系统的脱氮能力.当有机质质量分数由2.0%提高到9.5%时,SWIS对污水中COD、氨氮及总氮平均去除率分别降低了10.9%,19.5%和24%;N2O产率和转化率均随着碳源添加量的增加而下降.相关分析表明,硝化细菌、反硝化细菌数量对数值分别与N2O转化率呈显著正、负相关关系(R2分别为0.994及0.959),说明SWIS中微生物硝化-反硝化作用尤其上层硝化反应是N2O产生的主要途径.  相似文献   

19.
采用紫外诱变法对好氧反硝化菌A762进行诱变处理,根据显色圈大小(G)与菌落直径(C)之比,初筛得到8株突变菌,再根据脱氮效果,从中复筛出1株总氮(TN)去除率最高的突变株B25,并对其好氧反硝化性能进行了研究.结果显示:紫外诱变96 h后,在好氧条件下,相对于原菌株A762,菌株B25具有更好的生长优势,对NO-3-...  相似文献   

20.
文章研究了以甘油为碳源的生物反应器,在相同的硝酸盐氮浓度和甘油浓度梯度下,分别投加纯反硝化菌种和土著反硝化菌种时,去除地下水中硝酸盐的情况。结果表明,投加反硝化菌的反应器启动较快,去除效果较好,硝酸盐氮去除率可达到97.7%以上。在碳源充足的情况下,脱氮时效性差异不明显,反应器pH在7.0±0.2范围内波动。该研究旨在...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号