首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
中心线性McCoy环是线性McCoy环的一个推广。证明了环尺是右中心线性McCoy环'-3且仅当R[x]是右中心线性McCoy环。设R是右Ore环,Q是它的右分式环。如果只是右中心线性McCoy环,那么Q是右中心线性McCoy环。在右中心线性McCoy环上的上三角矩阵环中,找到了一些右中心线性McCoy子环。  相似文献   

2.
强幂级数McCoy环是幂级数McCoy环和强McCoy环的一个推广.如果R是一个环,I是R的一个reduced理想,给出了如果R/I是强幂级数McCoy环(幂级数McCoy环),那么R是强幂级数McCoy环(幂级数McCoy环).环R是幂级数McCoy环当且仅当R[x]是幂级数McCoy.找到了强幂级数McCoy环上的上三角矩阵环的一类强幂级数McCoy子环,得出了幂级数McCoy环和reduced环是强幂级数McCoy环.  相似文献   

3.
在左(或右)McCoy环上的矩阵环和上三角矩阵环中,找到了一些左(或右)McCoy子环;同时给出了没有单位元的左(或右)McCoy环.说明了一个左McCoy环不一定是右McCoy环,一个右McCoy环不一定是左McCoy环.最后指出reversible环满足一个McCoy条件.  相似文献   

4.
张路 《科技信息》2011,(9):I0150-I0150
设α是环R的自同态.引入α-sps McCoy环的定义,研究α-sps McCoy环的性质和扩张.  相似文献   

5.
引入拟-McCoy环和拟-弱McCoy环并研究其性质.讨论拟-McCoy环和拟-弱McCoy环之间的关系.证明了任意环R上的上三角矩阵环Tn(R)(n≥2)及交换的拟-弱McCoy环R上的n阶全矩阵环Mn(R)是拟-弱McCoy环.对于环R的理想I,当I(?)nil(R)时,若R/I是拟-弱McCoy环,则R是拟-弱McCoy环.同时也证明了R是拟-弱McCoy环当且仅当△-1R是拟-弱McCoy环.  相似文献   

6.
M-弱拟McCoy环     
引入了M-弱拟McCoy环的概念,研究了M-弱拟McCoy环的基本性质,给出了M-弱拟McCoy环的一些刻画,讨论了M-弱拟McCoy环与其它环之间的关系。  相似文献   

7.
给出矩阵环的两个幂级数McCoy子环和两个幂级数弱McCoy子环,得到了幂级数弱McCoy环不是reduced环.  相似文献   

8.
研究了reduced环上的上三角矩阵环中的斜Armendariz子环,讨论了弱斜Armendariz环的性质。  相似文献   

9.
设R是reduced环,记Un(R)为R上的n×n上三角矩阵环,则Un(R)的子环Wn是Armendariz环.  相似文献   

10.
如果在R[x]中,由(a0+a1x)(b0+b1x)=0可推出a0b1∈nil(R),那么称环R是弱线性Armendariz环,给出了弱线性Armendariz环的一些性质.  相似文献   

11.
称环R是Armendariz环, 如果(∑mi=0aixi)(∑nj=0bjxj)=0∈R[x], 那么aibj=0,其中0≤i≤m, 0≤j≤n。称环R是reduced环,如果它没有非零的幂零元。称环R是半交换环, 如果由ab=0,可得aRb=0,其中a,b∈R。找到了reduced环上的上三角矩阵环的一类子环既是Armendariz环又是半交换环。  相似文献   

12.
对于幺半群M,引入了M-McCoy环并研究了它的性质,证明了对于任意的u.p.-幺半群M,可逆环都是M-McCoy环.得到了对于幺半群M,u.p.-幺半群N,若R是交换的M-McCoy环,则R是M×N-McCoy环.证明了M-McCoy环的直积是M-McCoy环及在一定条件下M-McCoy环的子环是M-McCoy环.同时也证明有限生成的阿贝尔群G是无挠群当且仅当存在一个环R,使得R是G-McCoy环.  相似文献   

13.
研究斜三角矩阵环 T(R,n,α)的几个新的环论性质,证明了:(1)设α是环R的一个自同态且α(1)=1, 则R是Hermite环当且仅当T(R,n,α)是Hermite环;(2)R是右弱McCoy环当且仅当T(R,n,α)是右弱McCoy环;(3)设M是幺半群, α是环R的一个刚性自同态, 则RM-Armendariz 环当且仅当T(R,n,α)M-Armendariz 环。  相似文献   

14.
称环R是Armendariz环,如果(∑mi=0aixi)(∑nj=0bjxj)=0∈R[x],那么aibj=0,其中0≤i≤m,0≤j≤n.称环R是半交换环,如果由ab=0,可得aRb=0,其中a,b∈R.称环R是reduced环,如果它没有非零的幂零元.设R是reduced环,则R上的上三角矩阵环的子环Wns(R)既是Armendariz环又是半交换环.  相似文献   

15.
弱对称环     
环R是弱对称环当且仅当R上的n×n上三角矩阵环Tn(R)是弱对称环;对称环上的多项式环是弱对称环.  相似文献   

16.
定义了中心弱Armendariz环,并通过例子说明它是中心Armendariz环和弱Armendariz环的真推广.给出了中心弱Armendariz环的等价刻画,并讨论了它与Abelian环以及p.p.-环的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号