共查询到16条相似文献,搜索用时 46 毫秒
1.
王文康 《山东大学学报(自然科学版)》2013,(12):6-13
中心线性McCoy环是线性McCoy环的一个推广。证明了环尺是右中心线性McCoy环'-3且仅当R[x]是右中心线性McCoy环。设R是右Ore环,Q是它的右分式环。如果只是右中心线性McCoy环,那么Q是右中心线性McCoy环。在右中心线性McCoy环上的上三角矩阵环中,找到了一些右中心线性McCoy子环。 相似文献
2.
王文康 《华东师范大学学报(自然科学版)》2014,2014(3):60-76
强幂级数McCoy环是幂级数McCoy环和强McCoy环的一个推广.如果R是一个环,I是R的一个reduced理想,给出了如果R/I是强幂级数McCoy环(幂级数McCoy环),那么R是强幂级数McCoy环(幂级数McCoy环).环R是幂级数McCoy环当且仅当R[x]是幂级数McCoy.找到了强幂级数McCoy环上的上三角矩阵环的一类强幂级数McCoy子环,得出了幂级数McCoy环和reduced环是强幂级数McCoy环. 相似文献
3.
《华东师范大学学报(自然科学版)》2013,(6)
在左(或右)McCoy环上的矩阵环和上三角矩阵环中,找到了一些左(或右)McCoy子环;同时给出了没有单位元的左(或右)McCoy环.说明了一个左McCoy环不一定是右McCoy环,一个右McCoy环不一定是左McCoy环.最后指出reversible环满足一个McCoy条件. 相似文献
4.
5.
6.
引入了M-弱拟McCoy环的概念,研究了M-弱拟McCoy环的基本性质,给出了M-弱拟McCoy环的一些刻画,讨论了M-弱拟McCoy环与其它环之间的关系。 相似文献
7.
8.
9.
10.
王文康 《西北民族学院学报》2009,30(3):1-3
如果在R[x]中,由(a0+a1x)(b0+b1x)=0可推出a0b1∈nil(R),那么称环R是弱线性Armendariz环,给出了弱线性Armendariz环的一些性质. 相似文献
11.
王文康 《山东大学学报(理学版)》2008,43(2):62-65
称环R是Armendariz环, 如果(∑mi=0aixi)(∑nj=0bjxj)=0∈R[x], 那么aibj=0,其中0≤i≤m, 0≤j≤n。称环R是reduced环,如果它没有非零的幂零元。称环R是半交换环, 如果由ab=0,可得aRb=0,其中a,b∈R。找到了reduced环上的上三角矩阵环的一类子环既是Armendariz环又是半交换环。 相似文献
12.
对于幺半群M,引入了M-McCoy环并研究了它的性质,证明了对于任意的u.p.-幺半群M,可逆环都是M-McCoy环.得到了对于幺半群M,u.p.-幺半群N,若R是交换的M-McCoy环,则R是M×N-McCoy环.证明了M-McCoy环的直积是M-McCoy环及在一定条件下M-McCoy环的子环是M-McCoy环.同时也证明有限生成的阿贝尔群G是无挠群当且仅当存在一个环R,使得R是G-McCoy环. 相似文献
13.
研究斜三角矩阵环 T(R,n,α)的几个新的环论性质,证明了:(1)设α是环R的一个自同态且α(1)=1, 则R是Hermite环当且仅当T(R,n,α)是Hermite环;(2)R是右弱McCoy环当且仅当T(R,n,α)是右弱McCoy环;(3)设M是幺半群, α是环R的一个刚性自同态, 则R是M-Armendariz 环当且仅当T(R,n,α)是M-Armendariz 环。 相似文献
14.
王文康 《西北民族学院学报》2007,28(2):1-5
称环R是Armendariz环,如果(∑mi=0aixi)(∑nj=0bjxj)=0∈R[x],那么aibj=0,其中0≤i≤m,0≤j≤n.称环R是半交换环,如果由ab=0,可得aRb=0,其中a,b∈R.称环R是reduced环,如果它没有非零的幂零元.设R是reduced环,则R上的上三角矩阵环的子环Wns(R)既是Armendariz环又是半交换环. 相似文献
15.
16.
定义了中心弱Armendariz环,并通过例子说明它是中心Armendariz环和弱Armendariz环的真推广.给出了中心弱Armendariz环的等价刻画,并讨论了它与Abelian环以及p.p.-环的关系. 相似文献