共查询到17条相似文献,搜索用时 46 毫秒
1.
孙三军 《科技情报开发与经济》2012,22(18):123-125
近年来,学者对第三代厌氧生物反应器——EGSB反应器进行了大量的研究,以使其出水能够达到国标排放要求。在很大程度上,颗粒污泥性能是影响EGSB反应器运行效果的关键。总结了厌氧颗粒污泥的意义、形成及性能特点,以期为今后EGSB反应器的理论研究提供参考。 相似文献
2.
采用葡萄糖自配水研究了厌氧膨胀颗粒污泥床(EGSB)反应器运行过程中颗粒污泥的形态,微生物相及优势菌群的分布状况.结果表明,随着运行时间和有机负荷的提高,反应器中颗粒污泥的粒径逐渐增大,污泥床底部颗粒污泥的粒径大干上部的污泥粒径,呈明显的分层现象.在扫描电镜下观察颗粒污泥的微生物相,运行初期甲烷丝菌属为优势菌群;随着有机负荷的提高,甲烷丝菌逐渐减少,甲烷杆菌占优势;待反应器稳定运行后,菌群类型更加丰富多样,在甲烷杆菌和甲烷丝菌上附着有部分球菌,反刍产甲烷球菌等多种产甲烷菌混栖.不同高度颗粒污泥的形态和微生物相分布也表现出特有的规律性. 相似文献
3.
为研究生活污水EGSB反应器内的颗粒污泥特性,考察了运行条件的影响.结果表明,15℃以上时缩短水利停留时间(HRT)可提高COD去除率.HRT从1.6 h缩短至0.6 h,平均COD去除率从77%增加至82%.水力和基质的过负荷都会加速颗粒污泥解体.上升流速为2.8~3.1 m/h、容积负荷率(VLR)低于(12.9±7.6)kg/(m3·d)时,污泥粒径分布相对稳定;上升流速为3.8 m/h、冲击负荷为38 kg/(m3·d)时,则造成明显的污泥解体.高负荷运行有利于增加颗粒内部生物密度,但过度剪切造成的污泥破碎和粒径过小也会加剧洗出,尤其在低温条件下.缩短HRT可提高颗粒污泥活性.20℃以上,HRT从1.6 h缩短至0.75 h后,污泥比产甲烷活性(SMA)由0.85 g/(g·d)(VSS)增加至1.11g/(g·d)(VSS).长期低温驯化后,甲烷菌得以富集,10℃、HRT为2 h时,SMA增加至1.21 g/(g·d)(VSS).扫描电镜观察发现,颗粒污泥不同部位呈现明显的菌群分区现象. 相似文献
4.
微好氧条件下好氧颗粒污泥的培养 总被引:6,自引:1,他引:6
在微好氧条件下(曝气槽中溶解氧量在0.2~0.7mg/L之间)对好氧颗粒污泥的培养进行了研究.以厌氧颗粒污泥为接种污泥,考察了培养过程中厌氧污泥外观、尺寸、反应器中絮状污泥的MLSS(混合固体悬浮物)、SV(污泥体积)、SVI(污泥体积指数)和VSS(挥发性固体悬浮物),以及颗粒化污泥体积的变化.发现培养5d后,厌氧颗粒污泥完全解体,培养10d后出现新的颗粒污泥,培养40d后污泥完全颗粒化.培养成熟的颗粒污泥呈浅褐色,粒径主要集中于500~3000μm之间,SVI达18.147mL/g,比重达1.020g/cm^3,含水率(质量分数)达95.7%,有机组分的质量分数达74.1%,沉降速率达52m/h,各项指标均优于普通活性污泥和常规曝气条件下培养的好氧颗粒污泥. 相似文献
5.
常温下膨胀颗粒污泥床(EGSB)反应器处理城市污水 总被引:5,自引:0,他引:5
研究了用膨胀颗粒化污泥床(EGSB)反应器处理常温条件的城市污水.实验结果表明:在回流比为1∶1,水力停留时间(HRT)为2~24 h范围内,城市污水经EGSB处理后,其出水平均ρCOD为78 mg.L-1,ρSS为18mg.L-1,色度16,浊度12,pH 7.5~pH8.3,满足城镇污水处理厂二级排放标准.出水ρCOD中,硫化物占约50%的比例,脱除出水中的硫化物是进一步降低ρCOD浓度的关键.在一定的范围内(1∶1~14∶1),回流比对出水ρCOD影响较少,但当回流比为18∶1,上升流速为3.8 m.h-1时,污泥流失严重,出水恶化. 相似文献
6.
以普通絮状活性污泥为种泥,采用人工配水,在SBR反应器成功培养出好氧颗粒污泥.反应器运行7 d后已有部分污泥颗粒化,20 d后颗粒污泥大部分已经形成并处于稳定状态.研究表明,稳定后的好氧颗粒污泥平均直径5~6 mm,沉降速度29~72 m/h.COD的平均去除率为92.5%,NH3-N的平均去除率可达75.5%, TP的平均去除率为95%,表明该好氧颗粒污泥具有很好的除污能力. 相似文献
7.
系统考察接种市政污泥EGSB反应器的初次启动,以确定EGSB在常温低浓度情况下接种市政污泥时快速形成高活性、稳定颗粒污泥的可行性。接种市政污泥的EGSB反应器在常温条件下能够在42d内快速启动,所产生的颗粒污泥沉淀性良好、产甲烷活性高且菌群丰富,出水COD稳定在60mg/L以下,其他指标均达到相应国家标准。在常温下启动EGSB宜采用低进水浓度、较高的有机负荷、较大的上流速度的方式。 相似文献
8.
采用好氧颗粒污泥膜生物反应器处理畜禽废水,分别对COD、NH4^+-N、NO2^--N、NO3^--N的去除效果和对膜通量的影响进行了研究。结果表明:在水力停留时间(HRT)为8h,进水COD浓度为600mg/L,NH4^+-N浓度为40mg/L的条件下,出水COD、NH4^+-N的浓度分别为46.6和4.8mg/L。NO2^--N和NO3^--N的去除率也可达90%以上。并且好氧颗粒污泥的加入减缓了膜的污染。 相似文献
9.
微氧条件下厌氧颗粒污泥和消化污泥特性研究 总被引:9,自引:0,他引:9
用12 5mL血清瓶作为批量处理反应器,对厌氧颗粒污泥和消化污泥在厌氧和微氧条件下的COD去除率、污泥产率、产甲烷活性、抗冲击负荷能力等进行对比实验研究。实验结果表明:厌氧颗粒污泥和消化污泥均在微氧条件下表现出高COD去除率、低污泥产率、高产甲烷活性和强抗冲击负荷能力,且厌氧颗粒污泥在COD去除率、污泥产率、产甲烷活性和抗冲击负荷等方面更具有优势;对于0 5 gCOD/LR·d的有机负荷,反应器内最佳加氧量为10mL(10 %添加的COD)。 相似文献
10.
常温处理生活污水微氧EGSB反应器启动运行特性 总被引:1,自引:0,他引:1
为了研究微氧膨胀颗粒污泥床(EGSB)去除生活污水中的有机物和氮、磷(N,P)营养物的快速启动和稳动运行特性,在15~26℃常温下运行EGSB反应器9个多月,对微氧EGSB反应器内颗粒污泥的培养过程以及稳定运行阶段化学需氧量(COD)、N、P的去除规律进行了研究.通过给EGSB反应器内适量曝气,为EGSB反应器内的颗粒污泥提供溶解氧以产生微氧环境,以曝气柱内的曝气速率来控制回流水中的溶解氧量.研究结果表明,在15~26℃时微氧颗粒污泥的成功培养需要近4个月.当水力停留时间(HRT)为3.9~4.8 h,进水流量为2.5~3.1 L/h,进水COD、NH3-N、总氮(TN)和总磷(TP)的质量浓度分别在213~867,26.5~72.1,31.7~81.7和3.8~17.3 mg/L范围内波动,稳定运行微氧EGSB反应器时,COD、NH3-N、TN和TP的平均去除率分别达到了93.4%,83.8%,74.7%和44.0%;出水平均浓度分别为29,10.0,14.0和4.7 mg/L,水质分别达到ⅠA、ⅠB、ⅠA和Ⅲ级标准;出水浊度在6 NTU左右.微氧EGSB反应器进口处氧化还原电位宜控制在+15 mV左右.微氧使得颗粒污泥沉速降低,最小颗粒污泥沉速低至11 m/h,没有出现污泥流失.稳定运行阶段污泥中混合液悬浮固体浓度达到28g/L左右,混合液中可挥发性悬浮固体与悬浮固体的质量比为0.74~0.77,说明微氧EGSB反应器已成功启动并稳定运行. 相似文献
11.
在间歇式反应器(SBR)中经20d驯化后,普通消化污泥具有亚硝化功能.然后接种厌氧颗粒污泥,控制反应条件:温度21 ℃,pH7.5~8.5,溶解氧(DO)质量浓度0.5~1.0 mg/L, 25 d后完成厌氧颗粒污泥向好氧亚硝化颗粒污泥的转变.好氧亚硝化颗粒污泥具有较好的脱氮效果,一个反应周期内氨氮(NH 4N)去除率达到91.4%,总氮(TN)去除率达到70.6%,亚硝酸盐氮与硝酸盐氮质量浓度比(ρ(NO-2N)/ρ(NO-3N))>0.70,反应器实现了同步亚硝化反硝化. 相似文献
12.
好氧颗粒污泥的快速培养与污泥特性分析 总被引:1,自引:0,他引:1
为研究不同沉淀时间对污泥颗粒化过程的影响,采用序批式反应器,通过逐步缩短沉淀时间快速培养出好氧颗粒污泥.研究结果表明:在此过程中,污泥浓度逐渐降低,沉降性逐渐改善,污泥中无机质含量逐渐增加;不同沉淀时间所培养的污泥粒径不同,且污泥平均粒径与沉淀时间具有很好的负相关性;只有沉淀时间小于5min,才能形成颗粒污泥.污泥胞外聚合物(EPS)含量分析结果表明多糖在污泥颗粒化过程中起主要作用;在沉淀时间从7 min缩短至5 min的污泥颗粒化过程中,胞外聚合物中多糖的含量(以VSS计)由(140.98±19.54) mg/g增加到(310.79±50.86) mg/g;缩短沉淀时间是序批式反应器中快速培养好氧颗粒污泥的有效策略,且污泥快速好氧颗粒化要求的沉淀时间不能长于5 min. 相似文献
13.
五氯苯酚对厌氧颗粒污泥微生物的毒性作用 总被引:6,自引:0,他引:6
通过间歇培养方式研究了五氯苯酚对上流式厌氧污泥床和厌氧膨胀颗粒床反应器厌氧颗粒污泥微生物的毒性作用.结果表明五氯苯酚对厌氧颗粒污泥中微生物有较强的毒性;低浓度PCP对厌氧颗粒污泥中微生物辅酶F420含量、磷酸酯酶活性以及胞外多聚物的分泌都有抑制作用,高浓度PCP则直接杀死菌体;PCP对厌氧颗粒污泥中不同微生物活性有不同的抑制作用,对利用乙酸的甲烷菌和利用丙酸和丁酸的产氢产乙酸菌都有强烈的抑制作用;EGSB反应器厌氧颗粒污泥对PCP的抑制有更强的耐受能力. 相似文献
14.
15.
氨氮对厌氧颗粒污泥产甲烷活性的影响 总被引:14,自引:1,他引:14
利用取自ABR反应器中的厌氧颗粒污泥,通过间歇试验,研究了不同浓度氨氮对厌氧污泥产甲烷活性的影响以及活性恢复情况。实验结果表明:氨氮对厌氧颗粒污泥产甲烷活性的影响具有多重性,当氨氮浓度分别为0.2 g/L和0.4 g/L时,表现为促进产甲烷作用,二者的产甲烷能力分别比参考体系提高5%和10%;当氨氮浓度为0.8 g/L时,开始表现为抑制产甲烷作用,抑制程度为7%;并且随着氨氮浓度提高到2 g/L、3 g/L、4 g/L,厌氧颗粒污泥的产甲烷活性分别下降20%、28%、45%。此外,研究表明,氨氮影响产甲烷活性的浓度范围与具体的操作条件,如温度、pH值、碱度及污泥浓度等因素有关。 相似文献
16.
为考察温度对生物吸附性能的影响,采用传统的静态试验方法,以4-氯酚为吸附质,厌氧颗粒污泥为吸附剂,研究了温度对4-氯酚在厌氧颗粒污泥上吸附性能的影响。实验结果表明:不同温度下4-氯酚在厌氧颗粒污泥上的吸附可以很好地用Langmuir吸附等温方程(L方程)和Freundlich吸附等温方程(F方程)进行描述。L方程和F方程的相关系数R2分别在0.92~0.99和0.82~0.97之间,25℃时达到最高,分别为0.97(L方程)和0.99(F方程)。结果还表明,温度是影响4-氯酚在厌氧颗粒污泥上吸附的重要因素,随着温度的增高,平衡吸附量降低,4-氯酚在厌氧颗粒污泥上的吸附过程为放热过程。 相似文献
17.
为考察温度对生物吸附性能的影响,采用传统的静态试验方法,以4-氯酚为吸附质,厌氧颗粒污泥为吸附剂,研究了温度对4-氯酚在厌氧颗粒污泥上吸附性能的影响。实验结果表明,不同温度下4-氯酚在厌氧颗粒污泥上的吸附可以很好地用Langmuir吸附等温方程(L方程)和Freundlich吸附等温方程(F方程)进行描述。L方程和F方程的相关系数R2分别在0.92~0.99和0.82~0.97之间,25℃时达到最高,分别为0.97(L方程)和0.99(F方程)。结果还表明,温度是影响4-氯酚在厌氧颗粒污泥上吸附的重要因素,随着温度的增高,平衡吸附量降低,4-氯酚在厌氧颗粒污泥上的吸附过程为放热过程。 相似文献