共查询到20条相似文献,搜索用时 15 毫秒
1.
针对云计算系统中多任务并发模式下引发的资源竞争,本文提出了一种基于改进的粒子群优化的云计算资源调度分配模型,以提高资源利用率.首先,对云计算系统中的资源调度问题进行形式化描述,构建以任务的总完成时间为优化对象的目标函数.其次,求解时采用粒子群优化算法,为保证收敛速度且避免粒子群在搜索过程中陷入局部最优,定义了惯性权重函数.另外,引入一个调整算子以优化位置更新.仿真结果表明,本文提出的资源调度分配模型能够有效提高云计算资源利用率,大幅减少任务的处理时间. 相似文献
2.
萨日娜 《吉林大学学报(理学版)》2017,55(6):1518-1522
通过对蚁群算法和粒子群算法分别进行改进,利用两种算法自身优势相结合的方式建立一种蚁群粒子群算法,以提高云计算资源调度效率,解决云计算中资源调度方案优化问题.实验结果表明,该算法所消耗的时间更少,效果更好. 相似文献
3.
于志奇 《太原师范学院学报(自然科学版)》2011,10(2):74-76,115
粒子群优化算法在众多的优化问题上表现出良好的性能,已广泛应用于很多领域,但存在早熟收敛的问题,粒子极易陷入局部最优解.从提高收敛速度等方面对算法改进进行研究,并通过仿真实验证明改进算法的可行性,一定程度上提高了算法的性能. 相似文献
4.
对粒子群优化算法的几种改进方法 总被引:5,自引:0,他引:5
粒子群优化(PSO)算法是一种进化算法是一种较好的优化方法。PSO算法通过粒子间的相互作用发现复杂搜索空间的最优区域,其优势在于简单容易而优功能强大。本文对算法的几种改进方法作了一些探讨研究,并与其他算法进行了一些比较。 相似文献
5.
针对云计算资源有限,传统穷举搜索算法求解效率低的问题,提出一种基于改进粒子群算法的云计算服务部署优化方法.首先对云计算服务部署问题进行分析,将其转换成一个多目标组合优化问题,并建立相应的数学模型;然后采用全局搜索能力强的粒子群算法对数学模型进行求解,并针对标准粒子群算法收敛速度慢、存在早熟现象进行改进;最后通过仿真实验验证其可行性.实验结果表明,该方法可以快速找到最优的云计算服务部署方案. 相似文献
6.
针对大规模云计算环境下的资源调度问题,提出了改进的竞争粒子群优化算法,以提高云计算资源调度效率.基于多目标综合评价模型,首先建立包含任务完成时间、功耗以及负载均衡度的适应度函数,再利用混沌优化方法产生分布更加均匀的初始化粒子,引入自适应概率的高斯变异对胜利粒子位置进行更新,以提高种群多样性并增强全局搜索能力.仿真试验表明,在相同的条件下,本文算法能够寻到最佳的调度方案,适用于大规模资源调度,且结果优于对比模型. 相似文献
7.
于志奇 《晋中师范高等专科学校学报》2011,(3):20-22
粒子群优化算法(PSO)在众多的优化问题上表现出良好的性能,广泛应用于很多领域,但极易陷入局部最优解的困局.本文从提高收敛速度方面对PSO算法改进进行了研究,并通过仿真实验证明改进算法的可行性,一定程度上克服了PSO算法易于陷入局部最优解的缺点. 相似文献
8.
在运用粒子群优化算法求解水电站中长期优化调度问题时,针对粒子群优化算法存在的问题,采用了一种新的改进算法[1],该算法不仅增强了粒子群的全局搜索能力,同时有效避免了算法“早熟”,为水电站中长期优化调度提供了一种有效的解决方法. 相似文献
9.
粒子群优化算法(PSO)在众多的优化问题上表现出良好的性能,广泛应用于很多领域,但极易陷入局部最优解的困局.本文从提高收敛速度方面对PSO算法改进进行了研究,并通过仿真实验证明改进算法的可行性,一定程度上克服了PSO算法易于陷入局部最优解的缺点. 相似文献
10.
粒子群优化算法及其在水库优化调度中的应用 总被引:2,自引:0,他引:2
提出了基于粒子群优化算法求解梯级单目标优化调度问题的一般算法结构,该算法通过计算时段库水位的变化范围,把梯级优化调度问题转化为无约束的优化问题处理,使得算法具有稳定、高效的收敛性能.通过对三峡梯级发电优化调度问题的计算,表明该算法是求解梯级优化调度问题的一种有效的手段. 相似文献
11.
12.
针对粒子群优化算法在求解云计算任务调度问题中存在的收敛速度慢、精度低、易陷入局部极值等缺陷,综合考虑最大完成时间最少、任务执行总时间最优两个优化目标,提出一种多策略融合的粒子群优化(multi-strategy particle swarm optimization, MSPSO)算法,并将其应用于求解云计算任务调度问题。该算法融合模拟退火算法、饥饿游戏搜索和双重变异限制策略。首先,通过模拟退火算法动态更新惯性权重,平衡粒子群优化算法的全局搜索和局部搜索,帮助粒子跳出局部极值。其次,引入饥饿游戏搜索算法优化粒子位置更新策略,在算法后期加快粒子收敛速度,提高结果精度。最后,采用双重变异限制策略,同时限制粒子速度和位置,避免粒子发生越界。与其他3种粒子群优化算法进行对比实验,在适应度平均值、最小值、标准差3个方面,MSPSO都有更好的表现。通过仿真,在求解不同任务量的云计算任务调度问题中,MSPSO在总成本、适应度值最小化两方面均表现出明显优势。尤其当任务量为40时,MSPSO总成本比其他算法分别降低了14.4%、15.3%、11.2%,适应度值分别降低了10.5%、10.6%、7.6%,... 相似文献
13.
蔡林益 《西南师范大学学报(自然科学版)》2017,42(9)
对于云计算而言,虚拟机资源的合理高效配置具有重要意义.该文对粒子群方法进行到云计算资源配置的映射,详细地设计了3个约束条件和目标函数.目标函数中包含了资源利用率和迁移次数2个优化目标,整个虚拟机资源的配置过程设置了8个步骤.实验结果表明:同2种参照方法相比,该文所提出的基于粒子群算法的云资源配置方法完成配置后,不仅资源利用率高、迁移次数低,其迭代过程和迭代时间也令人满意. 相似文献
14.
15.
针对现有云计算平台在调度中任务派发速度相对较慢和资源利用率较低的问题,提出一种快速收敛的改进粒子群优化算法,能快速确定合理的子任务分配方案,以较高的寻优率达到所有任务总完成时间最短的优化目标.针对粒子群算法初期收敛速度快后期收敛变慢的情况,按时段动态调整惯量权重值,提高算法的收敛能力和求解精度;通过用粒子群中所有个体最优位置的平均值代替粒子群优化算法的速度更新式中的个体最优位置,大幅加快收敛速度,加快任务派发方案预测的速度.通过建模和算法实现对比,表明该粒子群优化算法能有效地提高任务分配的派发速度和减少任务的总完成时间. 相似文献
16.
为有效避免粒子群优化算法后期收敛速度慢的问题,提高寻优能力,设计了一种以自适应方式更新粒子飞行速度的弹性粒子群优化算法,建立了水电优化调度数学模型,提出了弹性粒子群优化算法解决水电优化调度问题的实现方法,包括粒子编码设计、适应度函数设计以及弹性修正值设计,并编制了基于Matlab语言的优化程序.实例仿真结果表明:弹性粒子群优化算法是有效的;相比基本粒子群优化算法和自适应粒子群优化算法,弹性粒子群优化算法求解水电优化调度问题具有更强的全局寻优能力和更快的收敛速度. 相似文献
17.
针对粒子群优化算法求解精度低、局部搜索能力差、进化后期收敛速度慢等问题,本文提出一种改进粒子速度和位置更新公式的粒子群优化算法(particle swarm optimization algorithm with improved particle velocity and position update formul... 相似文献
18.
针对协同粒子群优化算法存在的停滞现象,提出了一种改进的协同粒子群优化算法。采用优化法的子群协作方式,既保证了收敛速率,又可以防止陷入局部最优。同时引入综合学习策略,增加种群的多样性,防止种群出现停滞现象。在此基础上,又加入了扰动机制,进一步避免算法陷入局部最优。采用该算法对3个经典函数进行测试,并将其应用于Flow Shop调度问题,仿真实验结果表明:新算法有效克服了停滞现象,增强了全局搜索能力,比基本协同粒子群优化算法的优化性能更好。 相似文献
19.
简约粒子群优化算法 总被引:6,自引:0,他引:6
针对全局版粒子群的早熟和局部版粒子群的最优位置信息利用率低的问题,提出简约粒子群算法.该算法使用速度松弛迭代策略,使粒子不必频繁更新速度,当粒子速度有利于适应度进一步提高时,就在下一个迭代周期内维持该速度,这有利于提高良好速度信息的利用率,减小算法的计算量,加快运算的收敛速度.同时,利用精英集团策略,使多个最优位置信息在种群内充分共享,有效地控制了种群多样性,避免了早熟现象.在典型标准测试函数上进行了全局、局部版惯性因子粒子群和全局、局部版约束因子粒子群测试比较,结果表明简约粒子群算法具有更强的寻优能力和更高的稳定性,且计算量也比较小. 相似文献
20.
在"互联网+"时代,云计算代表了一种新的商业模式,而云系统中用户任务与计算节点的调度问题极大地影响着系统的性能和云竞争力。为此,提出了一种改进的量子粒子群算法——反向自适应量子粒子群算法(RAQPSO),通过对惯性权值参数的调整和加入反向学习算子来提高算法的全局搜索能力,并将其应用于云计算资源调度中,仿真验证了算法的有效性。建立了云计算资源调度问题的模型;采用自适应机制,将适应度函数的变化程度作为惯性权值的更新因子,避免了单纯地根据迭代次数的线性函数来取值,从而使粒子不易陷入局部最优;随后加入粒子反向学习算子,加强了粒子全局搜索能力。实验结果表明,RAQPSO算法大大节约了任务完成时间,并且保持了良好的计算节点负载平衡。 相似文献