首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
图Fm(△)Fn的边色数和邻强边色数   总被引:1,自引:0,他引:1  
V(Fm(△)Fn)={w}∪{ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Fm(△)Fn)={wui|i=1,2,…,m}∪{uivij|i=1,2,…,m,j=1,2,…,n}∪{uiui+1|i=1,2,…,m-1}∪{vijvij+1|i=1,2,…,m;j=1,2,…,n-1}对图G的一个正常的k边染法f,若e∈E(G),e=uv,{f(uw)|uw∈E(G)}≠{f(uw)|uw∈E(G)}则称f为G的一个k-邻强边染色法,k的最小值称为G的邻强边色数.本文得到了Fm(△)Fn的边色数和邻强边色数.  相似文献   

2.
对图G的一个正常的k边染色法f,若(≯)e∈E(G),e=uv,{f(uw)|uw∈E(G)}≠{f(vw)|vw∈E(G)},则称f为G的一个k-邻强边染色法,k的最小值称为G的邻强边色数.V(Fm(△)Sn)={w}∪{ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Fm(△)Sn)={wui|i=1,2,…,m}∪{uivij|i=1,2,…,m;j=1,2,…,n}∪{uiui+1|i=1,2,…,m-1}.本文得到了Fm(△)Sn的边色数和邻强边色数.  相似文献   

3.
对图G的一个正常的k边染色法f,若 e∈E(G),e = uv,{f(uw) | uw∈E(G)}≠{f(vw) | vw∈E(G)},则称f为G 的一个k 邻强边染色法,k的最小值称为G 的邻强边色数.V(Fm Sn) = {w}∪{ui | i =1,2,…,m}∪{vij | i =1,2,…,m;j =1,2,…,n},E(Fm Sn) = {wui | i =1,2,…,m}∪{uivij | i =1,2,…,m;j =1,2,…,n}∪{uiui+1 | i =1,2,…,m-1}.  本文得到了Fm Sn 的边色数和邻强边色数.  相似文献   

4.
对图G的一个正常的k边染色法f,若A↓e∈E(G),e=uv,{f(uw)|uw∈E(G))≠{f(vw)|vw∈E(G)),则称f为G的一个k-邻强边染色法,k的最小值称为G的邻强边色数.V(Fm△↓Sn)={w}∪{ui|i=1、2,…,m}∪{vv|i=1,2,…,m;j=1,2,…,n),E(Fm△↓Sn)={wui|i=1,2,….m}∪{uivu|i=1,2,…,m;j=1,2,…,n}∪{uiui |i=1,2,…,m-1).本文得到了Fm△↓Sn的边色数和邻强边色数.  相似文献   

5.
V(Fm Kn)={w}∪{ui|i=1,2,…,m}∪{uij|i=1,2,…,m;j=2,3,…,n},E(Fm Kn)={wui|i=1,2,…,m}∪{uivij|i=1,2,…,m;j=2,3,…,n}∪{uiui+1|i=1,2,…,m-1}∪{vijvik|i=1,2,…,m;j=2,3,…,n-1;k=j+1,j+2,…,n},对图G的一个正常的k边染色法f,若 e∈E(G),e=uv,{f(uw)|uw∈E(G)}≠{f(vw)|vw∈E(G)},则称f为G的一个k 邻强边染色法,k的最小值称为G的邻强边色数,从而得到了Fm Kn的边色数和邻强边色数  相似文献   

6.
V(Fm↓ΔKn)={ω}∪{ui|i=1,2…,m}∪{uij|i=1,2,…,mij=2,3,…n},E(Fm↓ΔKn)=(ωui)==1,2,…,m}∪{uivij|i=1,2,…,n}∪{uiui 1|i=1,2,…,m-1}∪{vijvik|i=1,2,…,m;j=2,3,…,n-1;k=j 1,j 2,…,n},对图G的一个正常的矗边染色法f,若↓Ae∈E(G),e=uv,{f(u w) uω∈E(G)}≠{v w)|vω∈E(G),则称,为G的一个k-邻强边染色法,k的最小值称为G的邻强边色数.从而得到了Fm↓ΔKn的边色数和邻强边色数。  相似文献   

7.
对m,n≥3,V(Wm Wn)={ui|i=0,1,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n};E(Wm Wn)={u0ui|i=1,2,…,m}∪{u1u2,…,um-1um,umu1}∪{uivij|i=1,2,…,m;j=1,2,…,n}m∪i=1{vi1vi2,vi2vi3,…,vi(n-1)vin,vinvi1}.V(Wm○Wn)={ui|i=0,1,…,m}∪{Vij|i=1,2,…,m;j=1,2,…,n}∪{vi0|i=1,2,…,m};E(Wm○Wn)={u0ui|i=1,2,…,m}∪{u1u2,…,um-1um,umu1}∪{vi0vij|i=1,2,…,m;j=1,2,…,n}m∪i=1{vi1vi2,vi2vi3,…,vi(n-1)vin,vinvi1}.且对Wm○Wn有Ui=Vin,i=1,2,…,m.得到了Wm Wn和Wm○Wn的边色数。  相似文献   

8.
对m,n≥3,V(Wm(○)Wn)={ui|i=0,1,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n};E(WmWn)={u0ui|i=1,2,…,m}∪{u1u2,…,um-1um,umu1}∪{uivij|i=1,2,…,m;j=1,2,…,n}∪mi=1{vi1vi2,vi2vi3,…,vi(n-1)vin,vinvi1}.V(Wm○Wn)={ui|i=0,1,…,m}∪{ Vij|i=1,2,…,m;j=1,2,…,n}∪{vi0|i=1,2,…,m};E(Wm○Wn)={u0ui|i=1,2,…,m}∪{u1u2,…,um-1um,umu1}∪{vi0vij|i=1,2,…,m;j=1,2,…,n}∪mi=1{vi1vi2,vi2vi3,…,vi(n-1)vin,vinvi1}.且对Wm○Wn有Ui=Vin,i=1,2,…,m.得到了Wm(○)Wn和Wm○Wn的边色数.  相似文献   

9.
设简单图G和图H的顶点集分别为V(G)={u1,u2,…,um}和V(H)={v1,v2,…,vn}.所谓G和H的Cartesian积G×H是指这样的一个图,其顶点集和边集分别为V(G×H)={wij|i=1,2,…,m,j=1,2,…,n},E(G×H)={wijwrs|i=r,vjvs∈E(H)或j=s,uiur∈E(G)}.在这篇文章里,我们讨论了笛卡儿积图C2m×Pn和C2m×Cn的邻点可区别边非正常边染色,并给出了相应色数.  相似文献   

10.
设G是简单图,图G的一个k-点可区别正常边染色f是指一个从E(G)到{1,2,…,k}的映射,且满足V u,v∈V(G),u≠v,有S(u)≠S(v),其中S(u)={f(uw)|uw ∈E(G)}.数min{k|G存在k-VDPEC染色}称为图G的点可区别正常边色数,记为χs(G),研究了WmVPn(n≤3)的点可区别边染色,给出了WmVPn(n≤3)的点可区别边色数.  相似文献   

11.
定义图Sm*Cn为V(Sm*Cn)={ω,uij}i=1,2,…,m;j=1,2,…,n},E(Sm*Cn)={wuil}i=1,2,…m}∪uijuij 1}i=1,2,…,m;j=1,2,…,n-1}∪}uinuil|i=1,2,…,m},文章给出了Sm*Cn的邻点可区别的边色数。  相似文献   

12.
对简单图G(V,E),设f是从E(G)到{1,2,…,k}的映射,k为自然数,如果f满足:1)对任意的uv,uw∈E(G),v≠w,有f(uv)≠f(uw);2)对任意的u,v∈V(G),u≠v,有C(u)≠C(v).则称f为图G的k-点可区别边染色法,而最小的k被称为点可区别边色数(其中C(u)={f(uv)|uv∈E(G)}).研究了图K2n\E(Fm)(n≥4,m≥2)的点可区别边色数.  相似文献   

13.
设G是顶点集合为V(G)={v_(0i)|i=1,2,…,p}的简单图,n是正整数,称M_n(G)为G上的锥(或广义Mycielski图),如果V(M_n(G)={v_(01),v_(02),…,v_(0p);v_(11),v_(12),…,v_(1p);…v_(n1),v_(n2),…,v_(np),w}) E(M_n(G))=E(G)∪{v_(ij)v_((i 1)k)|v_(0j)v_(0k)∈E(G),1≤j,k≤p,i=0,1,…,n-1}∪{v_(nj)w|1≤j≤p}.在这篇文章里,我们讨论了完全图上的锥的$D(2)$-点可区别的正常边染色,并给出了相应色数.  相似文献   

14.
设G是顶点集合为V(G)={v0i|i=1,2,…,p}的简单图,n是正整数,称Mn(G)为G上的锥(或广义Mycielski图),如果V(Mn(G))={v01,v02,…,v0p;v11,v12,…,v1p;…,vn1,vn2,…,vnp,w},E(Mn(G))=E(G)∪{vijv(i 1)k|v0jv0k∈E(G),1≤j,k≤p,i=0,1,…,n-1}∪{vnjw|1≤j≤p}.在这篇文章里,我们讨论了星和扇上的锥的D(2)-点可区别的正常边染色,并给出了相应色数.  相似文献   

15.
多重联图Sm∨Pn∨Pn 的邻点可区别边色数   总被引:1,自引:1,他引:0  
设G(V,E)为阶数至少是3的简单连通图,若f是图G的k-正常边染色,使得对任意的uv∈E(G),C(u)≠C(v),那么称f是图G的k-邻点可区别边染色(k-ASEC),其中C(u)={f(uw)|uw∈E(G)},而aχs′(G)=min{k|存在G的一个k-ASEC},称为G的邻点可区别边色数.给出多重联图Sm∨Pn∨Pn的邻点可区别边色数.  相似文献   

16.
设G是一个简单图,f是G的一个k-正常边染色,又满足对任意的uv∈E(G),都有C(u)≠C(v),则称f为G的一个邻强边染色,简称k-ASEC,且称χas(G)=min{k|G存在k-ASEC}为G的邻强边色数,其中C(u)={f(uv)|uv∈ E(G)}.给出了路.圈、树、完全图、完全二分图、星、扇、轮的冠的邻强...  相似文献   

17.
李倩倩  孙磊 《山东科学》2010,23(2):11-13
简单连通图G的邻点可区分全染色(邻强边染色)是图G的一个正常全(边)染色,并且使得任意两个相邻的点u,v满足C(u)≠C(v),其中C(u)={f(u)}∪{f(uw)|uw∈E(G),w∈V(G)}(C(u)={f(uw)|uw∈E(G),w∈V(G)}).满足图G有一个邻点可区分全染色(邻强边染色)所用的最少颜色数记为χat(G)(χ′as(G)).图G的最大度记为Δ(G).本文给出了χat(G)=Δ(G)+3的一个充分条件和χ′as(G)=Δ(G)+2的一个充分条件.  相似文献   

18.
对简单连通图G(V,E),存在一个正整数k,和映射f:V(G)∪E(G)→{1,2,…,k},使得对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的邻点可区别VE-全染色,而χvate(G)=min{k|k-AVD-VETC},称为G的邻点可区别VE-全色数,其中色集合C(u)={f(u)}∪{f(uv)|uv∈E(G)}.给出圈的倍图D(Cm)和扇的倍图D(Fm)的邻点可区别VE-边全色数.  相似文献   

19.
对简单图G(V,E),f是从V(G)∪E(G)到{1,2,...,k}的映射,k是自然数,若f满足(1)uv∈E(G),u≠v,f(u)≠f(v);(2)uv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),C(u)≠C(v);其中C(u)={f(u)}∪{f(uv)|uv∈E(G)};则称f是G的一个关联邻点可区别全染色.给出了一类3-正则重圈图Re(n,m)(m≥2,n≥3且n≡0(mod2))的关联邻点可区别全色数.  相似文献   

20.
对简单图G(V,E),设f是从E(G)到{1,2,…,k}的映射,k为自然数,如果f满足:1)对任意的uv,uw∈E(G),v≠w,有f(uv)≠f(uw);2)对任意的u,v∈V(G),u≠v,有C(u)≠C(v).则称f为图G的k-点可区别边染色法,而最小的k被称为点可区别边色数(其中C(u)={f(uv)|uv∈E(G)}).研究了图K2n\E(F5)(n≥13)的点可区别边色数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号