首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
泰安市城区环境空气可吸入颗粒物源解析研究   总被引:2,自引:0,他引:2  
本研究主要建立了泰安市可吸入颗粒物(PM10)的源与受体成分谱数据库,通过化学质量平衡(CMB)受体模型进行解析,得出了采暖期和非采暖期各颗粒物污染源对空气可吸入颗粒物污染物的贡献值和分担率,为有针对性的尘污染防治提供科学依据.  相似文献   

2.
长治市大气环境中可吸入颗粒物来源研究   总被引:1,自引:0,他引:1  
采集长治市环境空气可吸入颗粒物(PM10)及其主要污染源(煤烟尘、机动车尾气尘、土壤风沙尘、城市扬尘和建筑水泥尘)样品,利用化学质量平衡(CMB)受体模型和"二重源解析"技术解析了长治城区环境空气PM10的来源.结果显示城市扬尘对环境空气中PM10的贡献最大,占31%,其次为煤烟尘、建筑水泥尘和土壤风沙尘,贡献率分别为24%,12%和10%.城市扬尘主要来源于土壤风沙尘、煤烟尘和建筑水泥尘,其中土壤风沙尘是城市扬尘的最主要提供者.  相似文献   

3.
典型城市大气颗粒物无机组分源解析   总被引:1,自引:0,他引:1  
采用CMB 8.2受体模型对吉林省4个典型城市大气总悬浮颗粒物(TSP)进行了无机组分源解析研究.共选取了10个采样点,在采暖期和非采暖期采集了环境空气中的总悬浮颗粒物及各类污染源样品156个.研究结果表明,吉林市和白城市对TSP影响较大的是土壤风沙尘;通化市大气主要污染源为道路尘;而四平市的扬尘对TSP的影响较大.研究结果有利于制定大气污染防治规划,对于治理大气环境、改善空气质量具有指导意义.  相似文献   

4.
采用长春市2011—2012年期间非采暖期和采暖期8个监测点位的40个样本数据,应用主因子分析/绝对主因子分析法进行源解析研究,得到以下结论:通过主因子分析法识别长春市PM10的三个主要来源,分别是城市综合扬尘/其他未知尘源、道路尘/燃煤尘以及土壤风沙尘/机动车尾气。应用绝对主因子法计算出各污染源对PM10中各化学组分的贡献量和贡献率,并且通过绝对主因子分析法得到的解析值与监测值之间的拟合程度较好。基本解释了监测值;城市综合扬尘/其他未知尘源占51%,道路尘/燃煤尘占41%,土壤风沙尘/机动车尾气尘占8%。  相似文献   

5.
根据历史和现状监测数据,分析了苏北某县主要污染物的浓度特征,同时利用源清单法和受体模型法研究了该县主要大气排放源的空间分布及颗粒物来源解析。源解析结果表明,PM_(10)主要来自建筑尘,其贡献率可达到31.14%;其次是煤烟尘,贡献率为15.84%。对于PM_(2.5)来说二次无机气溶胶以及煤烟尘是最主要的来源,其贡献率分别为25.9%、22.68%,其次是机动车尾气,贡献率为19.49%。  相似文献   

6.
玉溪市中心城区环境空气中TSP的源解析   总被引:3,自引:0,他引:3  
应用受体模式的化学质量平衡法对玉溪市中心城区大气颗粒物的来源进行解析。分别采集玉溪市监测站、大营街和东风水库3个监测点大气中总悬浮颗粒物(TSP)样品,同时采集了土壤尘、煤烟尘、钢铁尘、交通尘和建材尘等5种源样品。采用电感耦合等离子体光谱仪分别测定受体和源样品中11种元素的质量比。建立玉溪市源解析的化学质量平衡受体模型,模型的计算得出了这5种污染源对TSP的贡献率分别是土壤尘为40.75%、建材尘为31.06%、煤烟尘为18.37%、钢铁尘为8.09%和交通尘为1.73%。  相似文献   

7.
大气颗粒物外来源解析的常用方法有后向轨迹分析法、化学质量平衡法、元素示踪法等,都是通过化学成分分析来确定源。但这类方法存在缺点,如成本高、流程长等。针对以上问题,提出一种新的量化大气环境中PM10外来源的方法,这种方法基于长春市背景站点的PM10的时间序列,通过确定本地源贡献后,利用PM10监测数据与其差值即可获得外来源的贡献量。经估算得到2011年长春市6个采样点PM10的外来源年平均贡献率从北向南逐渐降低,分别是食品厂为38.85%,客车厂为28.79%,邮电学院为24.31%,儿童公园为20.89%,净月潭为19.93%,甩湾子为37.35%。由此可以看出长春市空气污染主要来源于本地污染,为解决长春市大气颗粒物污染,改善空气质量更应该重视本地污染源的治理。  相似文献   

8.
冬季低温地区道路移动源大气污染物排放清单   总被引:1,自引:0,他引:1  
研究了冬季低温地区道路移动源排放清单及污染特征.以长春市为例,基于测试和“道路机动车大气污染物排放清单编制技术指南”,建立了2016年全年的道路移动源大气污染物排放清单,利用ArcGIS进行空间分配,并基于IVE模型分析典型车辆启动排放贡献率.结果表明,长春市道路移动源CO,HC,NOx,PM2.5和PM10年排放量分别为13.17,2.90,4.09,0.22,0.24万t;小型客车和重型货车分别为CO,HC和NOx,PM10的主要来源;启动阶段,长春市典型车辆冬季启动贡献率高于上海市;另外,道路移动源排放强度呈现出由城市中心向边缘递减的趋势.  相似文献   

9.
应用受体模式的化学质量平衡法(CMB)对晋城市市区6个监测点的总悬浮颗粒物(TSP)进行污染源的源解析,得出6类污染源对TSP的平均贡献率(土壤尘36.71%。煤烟尘26.54%,钢铁尘10.90%,建材尘10.49%,原煤尘8.46%和交通尘6.90%),并提出了综合防治对策。  相似文献   

10.
何玉峰  刘巍 《科技资讯》2006,(27):198-198
利用二重源解析技术分析了临沂市非采暖季节各颗粒物污染源对环境空气可吸入颗粒物的贡献,并据研究结论提出了防治扬尘污染的对策。  相似文献   

11.
选择福建省龙岩市环境监测站的大气常规监测点位为采样点, 于2009年9月16日至9月23日进行24 h连续采样, 采用扫描电镜方法分析样品中PM10的微观形貌特征和元素组成, 通过与当地典型污染源颗粒物的微观形貌和特征元素进行对比, 确定其主要污染来源. 研究结果表明: 各类污染源的微观形貌及特征元素均有明显区别,  不同采样点样品中PM10的微观形貌特征及元素组成也有差异, 据此分析得出的大气PM10颗粒物来源与化学质量平衡受体模型(CMB8.2)源解析结果一致.  相似文献   

12.
绝对主因子分析法解析龙岩市大气中的可吸入颗粒物来源   总被引:2,自引:0,他引:2  
采用福建省龙岩市2009~2010年对龙岩环境监测站、 龙岩师专、 闽西大学和龙岩学院4个大气采样点中PM10开展的3期采样数据, 利用主因子分析法(principal component analysis, PCA)和绝对主因子分析法(absolutely principal component analysis, APCA)对PM10的来源进行研究. 结果表明: 龙岩市大气主要污染源是二次扬尘/燃煤尘、 汽车尾气/道路尘、 土壤风沙尘和垃圾焚烧尘; 龙岩监测站采样点的主要污染源为汽车尾气/二次扬尘、 土壤风沙尘和道路尘; 龙岩师专的主要污染源为土壤风沙尘、 燃煤尘和汽车尾气/二次扬尘; 闽西大学的主要污染源为二
次扬尘/燃煤尘、 汽车尾气和垃圾焚烧尘; 龙岩学院采样点的主要污染源为二次扬尘、 汽车尾气/土壤风沙尘和燃煤尘.  相似文献   

13.
南昌市罗家集工业区大气颗粒物PM10的来源解析   总被引:1,自引:0,他引:1  
彭希珑  何宗健 《江西科学》2008,26(5):808-811
2005年冬季,在南昌钢铁责任有限公司监测站和罗家集何家村2个采样点采集PM10样品,用等离子体发射光谱法(ICP-AES)分析PM10中的无机元素,以无机元素为示踪物,利用CMB受体模型对PM10来源进行解析,结果表明:煤烟尘是南昌市罗家集工业区PM10的主要来源,其次是建筑尘、冶金尘、土壤尘和机动车尾气。  相似文献   

14.
利用CALPUFF和HYSPLIT模式,以太原一电厂为污染源,模拟了初冬时段PM10的扩散过程,在分析地形及复杂风场对污染物扩散的影响时,研究了PM10在典型气象条件下的迁移扩散.模拟计算结果表明:气象条件不利于污染物扩散,造成太原市区西部古交和万柏林间高PM10浓度区;同时,小静风条件下的局地环流造成市区PM10浓度较高.还探讨了利用模式结果和监测数据估算源项的方法,研究表明,数值模式可以用来进行大气质量模拟并进行污染源管理.  相似文献   

15.
济南市PM_(2.5)来源的解析   总被引:2,自引:0,他引:2  
采集济南市环境空气样品和污染源样品,分析其化学成分.采用化学质量平衡(Chemical Mass Balance,CMB)源解析技术,研究探讨济南市环境空气中PM2.5的来源.结果表明:对济南市有明显贡献的颗粒物源类是煤烟尘、机动车尾气尘、土壤尘、扬尘、建筑尘、钢铁尘、硫酸盐和硝酸盐等,并且城市区域尘大于外来尘的贡献,各源类PM2.5贡献值和分担率的季节变化较明显.  相似文献   

16.
Source apportionment for urban PM10 and PM2.5 in the Beijing area   总被引:3,自引:0,他引:3  
Airborne particulate matter (PM2.5 and PM10) samples were collected at the Beijing Normal University sampling site in the urban area of Beijing, China in dry and wet seasons during 2001―2004. Concen-trations of 23 elements and 14 ions in particulate samples were determined by ICP-AES and IC, re-spectively. Source apportionment results derived from both Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB) models indicate that the major contributors of PM2.5 and PM10 in Beijing are: soil dust, fossil fuel combustion, vehicle exhausts, secondary particulate, biomass burning and some industrial sources. We have identified both regional common sources, such as vehicular emis-sions, particulate of secondary origin and biomass burning, as well as country-specific problems, such as sand storms and soil dust that should be addressed for effective air quality control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号