首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial flagellum is a motile organelle, and the flagellar hook is a short, highly curved tubular structure that connects the flagellar motor to the long filament acting as a helical propeller. The hook is made of about 120 copies of a single protein, FlgE, and its function as a nano-sized universal joint is essential for dynamic and efficient bacterial motility and taxis. It transmits the motor torque to the helical propeller over a wide range of its orientation for swimming and tumbling. Here we report a partial atomic model of the hook obtained by X-ray crystallography of FlgE31, a major proteolytic fragment of FlgE lacking unfolded terminal regions, and by electron cryomicroscopy and three-dimensional helical image reconstruction of the hook. The model reveals the intricate molecular interactions and a plausible switching mechanism for the hook to be flexible in bending but rigid against twisting for its universal joint function.  相似文献   

2.
3.
S A Lloyd  F G Whitby  D F Blair  C P Hill 《Nature》1999,400(6743):472-475
Many motile species of bacteria are propelled by flagella, which are rigid helical filaments turned by rotary motors in the cell membrane. The motors are powered by the transmembrane gradient of protons or sodium ions. Although bacterial flagella contain many proteins, only three-MotA, MotB and FliG-participate closely in torque generation. MotA and MotB are ion-conducting membrane proteins that form the stator of the motor. FliG is a component of the rotor, present in about 25 copies per flagellum. It is composed of an amino-terminal domain that functions in flagellar assembly and a carboxy-terminal domain (FliG-C) that functions specifically in motor rotation. Here we report the crystal structure of FliG-C from the hyperthermophilic eubacterium Thermotoga maritima. Charged residues that are important for function, and which interact with the stator protein MotA, cluster along a prominent ridge on FliG-C. On the basis of the disposition of these residues, we present a hypothesis for the orientation of FliG-C domains in the flagellar motor, and propose a structural model for the part of the rotor that interacts with the stator.  相似文献   

4.
Dynamic properties of bacterial flagellar motors   总被引:42,自引:0,他引:42  
H C Berg 《Nature》1974,249(452):77-79
  相似文献   

5.
Sowa Y  Rowe AD  Leake MC  Yakushi T  Homma M  Ishijima A  Berry RM 《Nature》2005,437(7060):916-919
The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel many species of swimming bacteria. The rotor is a set of rings up to 45 nm in diameter in the cytoplasmic membrane; the stator contains about ten torque-generating units anchored to the cell wall at the perimeter of the rotor. The free-energy source for the motor is an inward-directed electrochemical gradient of ions across the cytoplasmic membrane, the protonmotive force or sodium-motive force for H+-driven and Na+-driven motors, respectively. Here we demonstrate a stepping motion of a Na+-driven chimaeric flagellar motor in Escherichia coli at low sodium-motive force and with controlled expression of a small number of torque-generating units. We observe 26 steps per revolution, which is consistent with the periodicity of the ring of FliG protein, the proposed site of torque generation on the rotor. Backwards steps despite the absence of the flagellar switching protein CheY indicate a small change in free energy per step, similar to that of a single ion transit.  相似文献   

6.
Yonekura K  Maki-Yonekura S  Namba K 《Nature》2003,424(6949):643-650
The bacterial flagellar filament is a helical propeller for bacterial locomotion. It is a helical assembly of a single protein, flagellin, and its tubular structure is formed by 11 protofilaments in two distinct conformations, L- and R-type, for supercoiling. The X-ray crystal structure of a flagellin fragment lacking about 100 terminal residues revealed the protofilament structure, but the full filament structure is still essential for understanding the mechanism of supercoiling and polymerization. Here we report a complete atomic model of the R-type filament by electron cryomicroscopy. A density map obtained from image data up to 4 A resolution shows the feature of alpha-helical backbone and some large side chains. The atomic model built on the map reveals intricate molecular packing and an alpha-helical coiled coil formed by the terminal chains in the inner core of the filament, with its intersubunit hydrophobic interactions having an important role in stabilizing the filament.  相似文献   

7.
Minamino T  Namba K 《Nature》2008,451(7177):485-488
Translocation of many soluble proteins across cell membranes occurs in an ATPase-driven manner. For construction of the bacterial flagellum responsible for motility, most of the components are exported by the flagellar protein export apparatus. The FliI ATPase is required for this export, and its ATPase activity is regulated by FliH; however, it is unclear how the chemical energy derived from ATP hydrolysis is used for the export process. Here we report that flagellar proteins of Salmonella enterica serovar Typhimurium are exported even in the absence of FliI. A fliH fliI double null mutant was weakly motile. Certain mutations in FlhA or FlhB, which form the core of the export gate, substantially improved protein export and motility of the double null mutant. Furthermore, proton motive force was essential for the export process. These results suggest that the FliH-FliI complex facilitates only the initial entry of export substrates into the gate, with the energy of ATP hydrolysis being used to disassemble and release the FliH-FliI complex from the protein about to be exported. The rest of the successive unfolding/translocation process of the substrates is driven by proton motive force.  相似文献   

8.
Structure of the Fe-S complex in a bacterial ferredoxin   总被引:10,自引:0,他引:10  
L C Sieker  E Adman  L H Jensen 《Nature》1972,235(5332):40-42
  相似文献   

9.
Structure of a bacterial multidrug ABC transporter   总被引:2,自引:0,他引:2  
Dawson RJ  Locher KP 《Nature》2006,443(7108):180-185
Multidrug transporters of the ABC family facilitate the export of diverse cytotoxic drugs across cell membranes. This is clinically relevant, as tumour cells may become resistant to agents used in chemotherapy. To understand the molecular basis of this process, we have determined the 3.0 A crystal structure of a bacterial ABC transporter (Sav1866) from Staphylococcus aureus. The homodimeric protein consists of 12 transmembrane helices in an arrangement that is consistent with cross-linking studies and electron microscopic imaging of the human multidrug resistance protein MDR1, but critically different from that reported for the bacterial lipid flippase MsbA. The observed, outward-facing conformation reflects the ATP-bound state, with the two nucleotide-binding domains in close contact and the two transmembrane domains forming a central cavity--presumably the drug translocation pathway--that is shielded from the inner leaflet of the lipid bilayer and from the cytoplasm, but exposed to the outer leaflet and the extracellular space.  相似文献   

10.
Zhang P  Wang J  Shi Y 《Nature》2010,468(7324):717-720
The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-? resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.  相似文献   

11.
Structure of the core and central channel of bacterial flagella   总被引:30,自引:0,他引:30  
K Namba  I Yamashita  F Vonderviszt 《Nature》1989,342(6250):648-654
X-ray fibre diffraction analysis of bacterial flagellar filaments has allowed the subunit packing and secondary structure arrangement in the filament core to be determined. The central hole, presumably a channel for flagellin transport, is large enough to accommodate the folded elongated flagellin molecules during their transport to the distal end for filament growth.  相似文献   

12.
13.
Clathrin-coated pits invaginate from specific membrane compartments and pinch off as coated vesicles. These vesicles then uncoat rapidly once released. The Hsc70 molecular chaperone effects the uncoating reaction, and is guided to appropriate locations on clathrin lattices by the J-domain-containing co-chaperone molecule auxilin. This raises the question of how a local event such as ATP hydrolysis by Hsc70 can catalyse a global disassembly. Here, we have used electron cryomicroscopy to determine 12-A-resolution structures of in-vitro-assembled clathrin coats in association with a carboxy-terminal fragment of auxilin that contains both the clathrin-binding region and the J domain. We have located the auxilin fragment by computing differences between these structures and those lacking auxilin (described in an accompanying paper). Auxilin binds within the clathrin lattice near contacts between an inward-projecting C-terminal helical tripod and the crossing of two 'ankle' segments; it also contacts the terminal domain of yet another clathrin 'leg'. It therefore recruits Hsc70 to the neighbourhood of a set of critical interactions. Auxilin binding produces a local change in heavy-chain contacts, creating a detectable global distortion of the clathrin coat. We propose a mechanism by which local destabilization of the lattice promotes general uncoating.  相似文献   

14.
Hainzl T  Huang S  Sauer-Eriksson AE 《Nature》2002,417(6890):767-771
The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein. It associates with ribosomes to mediate co-translational targeting of membrane and secretory proteins to biological membranes. In mammalian cells, the SRP consists of a 7S RNA and six protein components. The S domain of SRP comprises the 7S.S part of RNA bound to SRP19, SRP54 and the SRP68/72 heterodimer; SRP54 has the main role in recognizing signal sequences of nascent polypeptide chains and docking SRP to its receptor. During assembly of the SRP, binding of SRP19 precedes and promotes the association of SRP54 (refs 4, 5). Here we report the crystal structure at 2.3 A resolution of the complex formed between 7S.S RNA and SRP19 in the archaeon Methanococcus jannaschii. SRP19 bridges the tips of helices 6 and 8 of 7S.S RNA by forming an extensive network of direct protein RNA interactions. Helices 6 and 8 pack side by side; tertiary RNA interactions, which also involve the strictly conserved tetraloop bases, stabilize helix 8 in a conformation competent for SRP54 binding. The structure explains the role of SRP19 and provides a molecular framework for SRP54 binding and SRP assembly in Eukarya and Archaea.  相似文献   

15.
Ribonuclease (RNase) P is the universal ribozyme responsible for 5'-end tRNA processing. We report the crystal structure of the Thermotoga maritima RNase P holoenzyme in complex with tRNA(Phe). The 154?kDa complex consists of a large catalytic RNA (P RNA), a small protein cofactor and a mature tRNA. The structure shows that RNA-RNA recognition occurs through shape complementarity, specific intermolecular contacts and base-pairing interactions. Soaks with a pre-tRNA 5' leader sequence with and without metal help to identify the 5' substrate path and potential catalytic metal ions. The protein binds on top of a universally conserved structural module in P RNA and interacts with the leader, but not with the mature tRNA. The active site is composed of phosphate backbone moieties, a universally conserved uridine nucleobase, and at least two catalytically important metal ions. The active site structure and conserved RNase P-tRNA contacts suggest a universal mechanism of catalysis by RNase P.  相似文献   

16.
Walker JR  Corpina RA  Goldberg J 《Nature》2001,412(6847):607-614
The Ku heterodimer (Ku70 and Ku80 subunits) contributes to genomic integrity through its ability to bind DNA double-strand breaks and facilitate repair by the non-homologous end-joining pathway. The crystal structure of the human Ku heterodimer was determined both alone and bound to a 55-nucleotide DNA element at 2.7 and 2.5 A resolution, respectively. Ku70 and Ku80 share a common topology and form a dyad-symmetrical molecule with a preformed ring that encircles duplex DNA. The binding site can cradle two full turns of DNA while encircling only the central 3-4 base pairs (bp). Ku makes no contacts with DNA bases and few with the sugar-phosphate backbone, but it fits sterically to major and minor groove contours so as to position the DNA helix in a defined path through the protein ring. These features seem well designed to structurally support broken DNA ends and to bring the DNA helix into phase across the junction during end processing and ligation.  相似文献   

17.
Botchan M 《Nature》2007,445(7125):272-274
  相似文献   

18.
19.
非编码小RNA(small RNA, sRNA)是细菌基因转录后调控的一个重要层次,也是近十年来原核生物研究领域的焦点之一。大多数sRNA的作用与Hfq蛋白密切相关,即Hfq可以促进sRNA与其靶标mRNA的互补配对,进而影响翻译的进行或者mRNA的稳定性。笔者对Hfq的结构、Hfq参与sRNA调节作用的机制、Hfq在多种细菌中的功能表型进行了综述。Hfq是一个保守的蛋白质,在很多细菌中广泛存在,并与真核生物中参与mRNA剪切与降解活动的Sm蛋白同源。在结构上,Hfq具有两个非等同的RNA结合面,可以结合并介导多个RNA分子的相互作用,其结构体现了和功能的高度统一性。目前,对Hfq的研究主要集中于革兰氏阴性细菌中,在革兰氏阳性细菌中,Hfq的功能尚不明晰; 此外,在许多重要的细菌中,Hfq影响功能表型的具体机制也不清楚。因此,今后有必要进一步精细研究Hfq的分子结构特征和功能特点,深入分析Hfq对细菌表型多样化的影响机制,探究Hfq影响靶标分子和功能表型的详尽机制。  相似文献   

20.
W Bode  F X Gomis-Rüth  R Huber  R Zwilling  W St?cker 《Nature》1992,358(6382):164-167
Astacin, a digestive zinc-endopeptidase from the crayfish Astacus astacus L., is the prototype for the 'astacin family', which includes mammalian metallo-endopeptidases and developmentally regulated proteins of man, fruitfly, frog and sea urchin. Here we report the X-ray crystal structure of astacin, which reveals a deep active-site cleft, with the zinc at its bottom ligated by three histidines, a water molecule and a more remote tyrosine. The third histidine (His 102) forms part of a consensus sequence, shared not only by the members of the astacin family, but also by otherwise sequentially unrelated proteinases, such as vertebrate collagenases. It may therefore represent the elusive 'third' zinc ligand in these enzymes. The amino terminus of astacin is buried forming an internal salt-bridge with Glu 103, adjacent to His 102. Astacin pro-forms extended at the N terminus, as observed for some 'latent' mammalian astacin homologues, did not exhibit this 'active' conformation, indicating an activation mechanism reminiscent of trypsin-like serine proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号