首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
制备一种利用4,4′-N,N′-dicarbazole—biphenyl(CBP)作为超薄空穴注入缓冲层.CBP作为一种较好的缓冲材料,改善了有机发光器件的性能.CBP阻挡部分从阳极ITO注入到有机层NPB的空穴,从而平衡了空穴和电子的注入.有缓冲层的有机发光器件比没有缓冲层有机发光器件的电流效率有了明显的提高.当缓冲层CBP为4nm时,最大电流效率在8V时达到5.66cd/A,这是没有缓冲层器件电流效率的近1.5倍.  相似文献   

2.
吴志军 《松辽学刊》2008,29(3):60-62
本文制作了一种硅基顶发射有机发光器件.采用紫外表面处理的金属银作为阳极;超薄的铝/银作为半透明的复合阴极;4,4′,4″-tris{N,-(3-methylphenyl)-N-phenylamin}triphenylamine(m-MTDATA)作为空穴注入层;N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine(NPB)作为空穴传输层;tris(8-hydroxyquinoline)aluminium(Alq)作为发光层.器件在3V下开启,开启亮度为3cd/m^2;在11V达到最大亮度19610cd/m^2;在6V时达到最高效率2.7cd/A.  相似文献   

3.
本文采用插入空穴阻挡层的方法制备了性能较好的有机蓝光器件.器件的结构为:ITO/2T-NATA/NPB/DPVBi/TPBi/Alq3/LiF/Al,当2T-NATA,NPB,DPVBi,TPBi,Alq3,LiF的厚度分别为15、30、15、15、30、0.5nm时,器件的性能最好.在电流密度为508mA/cm^2时,最大亮度达到8461cd/m^2,在电流密度为13mA/cm^2,器件的最大效率为2.99cd/A.且在4~13V较大的范围内,发光色度几乎不随驱动电压或电流密度的改变而改变,稳定在x=0.16,y=0.12附近,是色纯度较好的蓝光器件.  相似文献   

4.
制备了结构为ITO/NPB(40nm)/DPAVBi(znm)/Alq,(30nm)/LiF(0.5nm)/AI的蓝绿色OLED器件.通过改变DPAVBi的厚度,研究其对器件性能的影响.当DPAVBi层厚度为20nm时,器件的性能较好.在电流密度为38.79mA/cm。时,效率为3.32cd/A;在电压为21V时,亮度为8296cd/m。.而且,随着电流密度的增加,四个器件的效率曲线变化非常平缓,说明器件的电流荧光湮没性较弱.当驱动电压从10V增加到21V时,器件的色坐标从(0.27,0.48)变化到(0.25,0.45),始终处于蓝绿光范围内,色度变化很小.  相似文献   

5.
利用高真空有机分子束沉积系统,我们选择了一种较好的蓝光材料4,4’-bis(2,2,’-diphenylbinyl)-1,1’-bipheny1(DPVBi)和黄光材料5,6,11,12,-tetraphenylnaphthacene(rubrene)采用适当的比例相混合产生白光效果,制备了近白光有机电致发光器件.在电压为16V时器件的亮度达到了最大值接近4272cd/m^2,器件的效率在电压为5V时为3.3cd/A,在电压为15V时器件的色坐标(0.34,0.36),比较接近白光的等能点.  相似文献   

6.
采用锌金属配合物DPIHQZn((E)-2-(4-(4,5-diphenyl-1H-imidazol-2-yl)styryl)quinolin-Zinc),将其掺杂到CBP中作为黄光发射层,制备了黄色有机电致发光器件(OLED),器件结构:ITO/2T-NATA(20 nm)/CBP:x wt.%DPIHQZn(30 nm)/Alq3(40 nm)/LiF(0.5 nm)/Al,研究了4种不同掺杂浓度(x=5,10,15,20)对黄光器件性能的影响,利用黄光发射层中主体材料与客体材料之间能量转移特性,得到了性能较好的有机电致黄光器件.在相同条件下,当掺杂浓度为15%时,其性能在4组器件中达到最佳,在驱动电压为14 V时呈黄光发射,器件最大亮度达到4 261 cd/m2,最大电流效率为0.84 cd/A,器件的色坐标稳定.  相似文献   

7.
主要介绍结构为MeO-TAD(x nm)/NPB(40 nm)/DPVBi(30 nm)/Alq(30 nm)/LiF(0.5 nm)/AL的蓝色有机电致发光器件,空穴注入层MeO-TAD的厚度x按照0 nm、1.0 nm、1.5 nm、2.0 nm变化,其它层保持不变.当x=2 nm时,其器件性能最好,在15 V时亮度达到最大,为5 876 cd/m2.器件的开启电压较低,在5 V的驱动电压下亮度达到10.5 cd/m2,器件在8 V电压时电流效率达到最大,为3.22 cd/A;且器件的色坐标稳定,在5 V到13 V的驱动电压下几乎不发生改变,稳定在x=0.17、y=0.18附近,属于很好的蓝光发射.  相似文献   

8.
采用蓝色荧光有机染料DSA-Ph作为客体材料,将其掺入主体材料BUBH-3中,制备了高效率色稳定的单发光层掺杂结构的蓝色有机荧光器件.当DSA-Ph掺杂质量比为3 wt.%时,器件的最大电流效率4.17 cd/A,对应色坐标为(0.161,0.286),亮度为5 038 cd/m2.当电压为14 V时,器件的最大亮度为16 160 cd/m2.另外,亮度从907 cd/m2增加到14 680 cd/m2过程中,其色坐标从(0.163,0.287)到(0.159,0.281),变化量ΔCIExy仅为(0.004,0.006).  相似文献   

9.
利用真空气相沉积法制备了基于稀土镱配合物的有机电致发光器件,其器件结构为ITO/m-MTDATA/TPD/TPD:Yb(DBM)3Pyphen/ Yb(DBM)3Pyphen/BCP/LiF/Al.其中TPD为空穴传输层,Yb(DBM)3Pyphen为发光层,BCP为激子阻挡层.该器件的发射是来自Yb(DBM)3Pyphen与TPD形成的激基复合物的发光.在直流电压的驱动下,11 V时最高亮度和效率分别为103 cd/m2和0.47 cd/A,色坐标为(0.346 0.32).  相似文献   

10.
研制了用有机材料Tb(AcA)3.phen做发射层的绿色发光二极管,二层结构为玻璃衬底ITO/芳香族二胺类衍生物TPD/Tb(AcA)3.phen/Al。各功能均用真空热蒸发的方法制备。在正向直刻苦坟驱动下获得了Tb^3+的特征发光,同时还发现一个峰位425nm的蓝光发射、它来源于空穴输运层TPD。在室温条件下器件的阈值电压为5V,当驱动电压提高到15V时,器件的  相似文献   

11.
文章介绍了用一定浓度的醋酸镍来对ITO表面进行前处理.把ITO玻璃浸泡在浓度分别为2.5 g/L,5 g/L,10 g/L的醋酸镍溶液中超声15 min,然后制备双层结构OLED器件.器件的基本结构为ITO/NPB(50 nm)/Alq3/(50 nm)/LiF(0.5 nm)/Al.经过处理的器件,开启电压变低,器件的亮度变化不大,但效率明显提高,尤其是用浓度为5 g/L的醋酸镍溶液超声后制备的器件效率最大,提高了2倍.而且用此方法制备的器件重复性很好.  相似文献   

12.
用硫酸溶液处理ITO表面制备了有机电致发光器件,发现随着溶液浓度和超声时间的不同,器件的效率也发生变化.当硫酸的浓度是98%且超声时间为10 min时,OLED具有最高的效率及较大的亮度,器件的效率提高了近4倍.通过扫描电镜对ITO表面形貌进行了对比分析,可以看到,经过处理的ITO玻璃表面的粗糙度明显降低,提高了有机膜的附着力,从而改善了器件的效率.  相似文献   

13.
在Fowler-Nordherim的隧穿理论基础上,建立了高场下单层有机EL器件复合发光的理论模型,讨论了电场强度以及界面势垒对单层有机EL器件发光的影响。  相似文献   

14.
一种新的蓝光咔唑衍生物3,6-芘基-9-乙烷基咔唑在实验上被设计合成.它具有高荧光效率,可作为空穴传输型材料.本论文采用量子化学方法研究了该物质的结构和光学性质.计算结果表明,3,6-芘基-9-乙烷基咔唑以优良的性能在有机电致发光器件中可用于蓝色空穴传输型发光材料.  相似文献   

15.
详细叙述了有机电致发光器件的工作原理及蓝色有机发光材料8羟基喹啉硼化锂(LiBq4)的制备方法、结构表征,并讨论了利用LiBq4研制蓝色发光器件中存在的问题。  相似文献   

16.
有机电致发光器件在彩色平板显示等领域里有极大的应用前景,已引起广泛的关注.与无机物相比,有机发光材料具有高荧光效率,颜色的广泛选择性及易成膜性,是当今显示器件领域的研究热点.本文就近年来有机分子发光材料的最新发展状况对有机发光器件的应用前景和商业化的可能性进行了讨论。  相似文献   

17.
沥青混凝土路面结构层有限元计算方法和分析   总被引:4,自引:1,他引:4  
陈卓  李萍 《甘肃科学学报》2005,17(4):107-111
应用三维有限元动力学的基本方法和正交试验设计,结合有限元分析软件ANSYS对重载作用下多层弹性体系的动力响应进行分析.结果表明,路面结构层的厚度是影响竖向应力分布的主要因素.路面材料的弹性模量对路面的整体刚度和面层的剪切应力影响最大,而且材料的弹性模量、泊松比和结构层厚度存在一定的交叉影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号