首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
支持向量回归机(SVR)和孪生支持向量回归机(TSVR)是机器学习中的常用算法.受TSVR启发,针对SVR训练速度和预测精度问题,提出一种新型非平行平面支持向量回归机(NNHSVR).NNHSVR的优势如下:(1)NNHSVR模型构造的是两个较小规模的二次规划问题,最终求解得到2个非平行平面,训练速度较SVR快;(2)NNHS-VR在目标函数中加入调节参数u,对边界函数进行约束,使得模型对离群点更加鲁棒.人工数据集和UCI数据集上的实验表明:NNHSVR算法不仅有较好的泛化性能,而且训练速度快.将NNHSVR算法应用于传染病预测问题,取得了比传统传染病预测模型BP神经网络更好的效果.  相似文献   

2.
基于支持向量回归机的中国碳排放预测模型   总被引:2,自引:0,他引:2  
选取人口、城镇化率、人均GDP、服务业增加值比重、单位GDP能耗、煤炭消费比例等6项影响因素作为自变量,运用支持向量回归机方法构建中国碳排放预测模型。以1980—2009年碳排放及影响因素数据为样本,通过训练、测试得到具有良好学习与推广能力的支持向量回归机模型。结合"十二五"规划,设置不同情境下影响因素预测值,对2010—2015年中国碳排放进行预测。预测结果表明,中国可适当降低GDP增速,不断优化能源结构,以确保碳减排目标的有效实现。  相似文献   

3.
针对风速随机性大、影响因素多、预测准确度不高的情况,基于支持向量机与信息几何的统计学关联性,从信息几何学角度分析核函数的几何结构,构造数据依赖核函数,并与支持向量机回归相结合,形成数据依赖核支持向量机回归(Data Dependent Kernel-SVR,DDK-SVR)方法.将该方法用于风速预测中,建立DDK-SVR风速预测模型,并将预测结果与传统支持向量机、神经网络方法进行对比.结果表明,DDK-SVR方法具有更高的预测精度.  相似文献   

4.
阎纲 《科学技术与工程》2008,8(2):507-509533
介绍了回归问题与支持向量机及其股市预测的研究现状,提出了采用支持向量机的股票预测方法,通过实验证明了该方法的有效性.  相似文献   

5.
基于支持回归支持向量机模型,建立了一种对时态数据预测的方法,可以对多属性时态数据进行预测,实验结果表明该方法在预测上具有一定的稳定性和准确性.  相似文献   

6.
采用支持向量机理论建立了一种新的支持向量回归预测模型,模型的求解可转化为二次规划问题,并能实现模型参数的自动选择,运用MATALAB软件进行编程实现.用此模型对我国财政收入问题进行了预测,并与统计回归模型进行了比较,结果表明了该模型具有较好的预测效果和概化能力.  相似文献   

7.
 利用最小二乘方法和临近支持向量机(PSVM)算法,并结合双胞支持向量机(TSVR),提出了最小二乘双胞支持向量回归机(LSTSVR).作为对照,TSVR需要求解2个二次规划问题,而LSTSVR仅需求解2个线性方程组.最后利用不同的实例验证了所提算法的可行性和有效性.  相似文献   

8.
综合最小二乘回归估计和支持向量机回归估计算法的各自在回归理论上的优势,通过理论推导,提出一种改进的支持向量机回归估计算法--SVR-LS方法.然后通过实验对比验证,发现新方法不但在拟合逼近方面有不错的效果,而且在回归估计方面,其学习速度和精度都要优于标准的支持向量机回归估计算法.  相似文献   

9.
提出一种基于遗传算法优化支持向量回归机的模型进行网格负载预测,使用遗传算法和交叉验证技术解决了支持向量回归机参数难以确定的问题.标准数据集仿真实验结果表明,该模型与试验法定参的支持向量回归机和BP神经网络相比具有更优的预测性能.  相似文献   

10.
为了提高网络流量的预测精度,准确描述网络流量变化规律,提出了一种基于向量回归的网络流量预测模型,它能全面刻画网络流量变化趋势.  相似文献   

11.
支持向量机(Support VectorMachine,SVM)是近年来受到广泛关注的一种学习机器.将支持向量机引入环境时序预测中,有效地求解了空气中降尘的预测问题.实验结果表明,支持向量机不仅具有较强的理论背景,而且具有更强的预测预报能力.  相似文献   

12.
提出了一种新的多输出支持向量回归算法,给出了定义在超球上的损失函数,并将训练SVM转化为迭代解线性方程组,在求解过程中采用边计算边使矩阵降阶的方法,加快了运算速度.建立了该算法应用于股市预测的模型,对上证指数的建模与预测表明:与单输出支持向量回归算法建立的模型相比,该算法具有更好的整体预测精度和抗噪性能,是对股市进行分析和预测的一种可行而有效的方法.  相似文献   

13.
基于支持向量机的机械设备状态趋势预测研究   总被引:17,自引:1,他引:17  
提出了用支持向量机对机械设备状态趋势进行预测的新方法,构造了相应的支持向量回归机,并分别用仿真数据和实际数据对其性能进行了验证.将该支持向量回归机应用于某机组振动信号的预测,采用径向基核函数和合适的参数,使该向量回归机对振动量峰峰值的单步预测误差小于2%,24步预测误差小于5%,表明该算法对机械设备的运行状态趋势具有较好的预测能力.  相似文献   

14.
针对区间回归中上、下2个端点的误差范围不相同的非对称问题,建立了Fitness、Possibility 和Necessity 3个回归模型,对区间样本的中心趋势和最大、最小可能边界进行综合分析,并引入支持向量机,区分线性和非线性两种情况,提出了非对称区间回归支持向量机AIR-SVM(asymmetrical interval regression SVM)算法,对非对称区间数据集回归估计进行了分析.通过3个数据仿真实验,检验了提出算法的良好性能,有效地解决了非对称情况下精确数输入-区间数输出的区间数据回归问题.  相似文献   

15.
在支持向量机的回归分析过程中,由于多个参数需要同时调整,并且参数的取值范围大,给实际的工程应用带来很大困难,针对上述问题,本文提出了动态网格优化算法,使用优化后的参数来训练支持向量机,用测试样本对回归模型进行评价后可以得到较小的均方误盖值。  相似文献   

16.
基于支持向量机回归的港口吞吐量非线性组合预测   总被引:3,自引:0,他引:3  
提出了一种基于支持向量机回归算法的港口吞吐量非线性组合建模预测方法,并运用该方法进行了港口吞吐量预测,同时将该预测结果与其他方法的预测结果进行了比较.结果表明,该方法具有很强的学习及泛化能力,在处理具有一定程度的不确定性的非线性系统的组合建模预测问题时具有很好的应用价值.  相似文献   

17.
使用回归分析策略以文档满足用户的信息需求程度作为回归分析的目标值,利用回归支持向量机构建了信息检索模型.新模型不仅提供了融合不同来源特征的灵活框架,而且由于使用回归支持向量机寻找具有ε不敏感损失的回归函数,因此具有良好的泛化性能.实验表明,新模型性能优于目前主流的基于语言模型的信息检索方法.  相似文献   

18.
基于粗糙集和支持向量机的股指期货预测模型研究   总被引:1,自引:0,他引:1  
周磊 《山东科学》2010,23(5):66-70
本文提出基于粗糙集和支持向量机的股指期货走势预测模型。在模型中首先使用粗糙集对指标集进行特征选择,剔除冗余指标,然后使用支持向量机对基于历史数据的股指期货价格走势进行预测。为了评估该预测模型的性能,将预测结果与传统的自回归移动平均模型和BP神经网络模型的预测结果进行比较。实验结果表明了该模型的有效性。  相似文献   

19.
郑一华 《科技资讯》2006,(9):210-211
支持向量机是V.Vapnik在统计学习理论(SLT)的基础上发展起来的一种新兴的用以解决小样本的机器学习方法。文采用支持向量回归(SVR)的方法分别对人工构造的仿真函数和中日国际贸易发展进行了回归和预测,仿真结果展示了SVR有限样本的情形下仍然具有较好的拟合和预测能力。  相似文献   

20.
一种新的支持向量回归预测模型   总被引:3,自引:0,他引:3  
运用支持向量机(SVM)理论,建立了一种新的支持向量回归(SVR)预测模型.模型的求解可转化为二次规划问题,并能实现模型参数的自动选择.用此模型对我国粮食产量增长率的预测表明,模型具有较好的概化能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号