共查询到20条相似文献,搜索用时 15 毫秒
1.
水稻温敏显性核不育基因的遗传分析和分子标记定位 总被引:25,自引:1,他引:25
温敏核不育材料 8987,在 2 4℃以下完成雄性不育 ,2 7℃以上恢复可育 .利用该材料与 3个可育品种杂交 ,并对F1和F2 群体进行花粉育性观察和遗传分析 ,确认 8987的不育特性受一对显性基因控制 .以F2 群体 ( 8987×地谷 )为基础 ,应用RFLP和微卫星标记结合群分法 ,发现第 6染色体的RFLP标记C2 35和微卫星标记RM5 0与显性核不育基因连锁 ;进一步将该基因定位于第 6染色体具体位置 .由于该基因是首次定位 ,暂定名为TMS . 相似文献
2.
水稻脆性突变体的分离及其基因定位 总被引:9,自引:3,他引:9
水稻脆性突变体(嫩稻)是从γ射线诱变的籼稻品种双科早的M2代中筛选而来的茎、叶较脆突变体,被命名为fpl。利用嫩稻和C-堡杂交的F2群体对fpl位点进行了精细的遗传定位。fpl位点首先被初步定位在水稻第3染色体着丝粒附近的微卫星DNA分子标记RM16和STS分子标记G114a之间,遗传距离分别为3.1和9.1cM。为了进一步定位fpl位点,在RM16t G144a间发展了一个CAPS分子标记C524a,与fpl位点的遗传距离为0.4cM。这一结果为进一步构建覆盖fpl基因区域的BAC重叠群和最终克隆fpl基因奠定了坚实的分子基础。等位性测定表明fpl与已知的水稻茎突变基因bcl等位。 相似文献
3.
水稻早衰叶突变体基因psll的遗传分析和精细定位 总被引:1,自引:0,他引:1
植物叶片是最主要的光合作用器官.作物叶片生长、发育和衰老的分子机理研究与提高作物产量形成密切相关.利用水稻中花11号经C0^60辐射产生的早衰叶突变体分别与南京6号和南京11号杂交的F1及其衍生的F2群体,对早衰叶突变体进行了遗传分析和基因定位.结果表明,该早衰叶突变体是由一隐性核基因psll控制,利用SSR标记把psll定位在水稻第2染色体上.利用已经公布的水稻基因组序列,在该基因附近区域发展了34对新的STS标记,对psll进行了精细定位.以此为基础,构建了覆盖psll区域的BAC重叠群,并把目标基因定位在一个约48kb的区段上,为最终克隆目标基因奠定了基础. 相似文献
4.
水稻类病变突变体lmi的鉴定及其基因定位 总被引:4,自引:0,他引:4
水稻类病变突变体lmi(lesion mimic initiation)是从γ射线诱变的籼稻品种中籼3037的后代中发现的,属于起始型的类病变突变体. 无菌培养、台盼蓝染色及遮光实验表明, 该突变体受光照控制细胞自主性死亡. 遗传分析表明, 该突变性状由一对隐性基因控制. 利用lmi和93-11杂交的F2群体对lmi基因进行初步遗传定位, 发现该基因定位于水稻第8号染色体着丝粒附近的两个微卫星分子标记RM547和RM331之间, 与两者遗传距离分别为1.2和3.2 cM. 进一步利用这两个标记之间发展的CAPS标记 C4135-8, C4135-9及C4135-10对lmi基因进行精细的遗传定位, 结果表明, lmi基因与标记C4135-10共分离. 这一结果为克隆lmi基因奠定了基础. 相似文献
5.
水稻白穗突变体基因的鉴定和染色体定位 总被引:1,自引:0,他引:1
从一个水稻籼粳交F6后代自然群体中获得1例白穗突变体, 其成熟植株基部少数叶片中脉呈现白色, 抽穗后穗粒内外稃和枝梗均表现白色. 用突变体作母本与一粳稻恢复系品种制7杂交, 获得一个F2分离群体. 初步的遗传分析表明, 该突变属单基因隐性性状. 利用已定位的微卫星标记进行连锁分析, 发现该基因位于水稻第1染色体上. 进一步根据已完成的水稻基因组序列寻找微卫星位点, 连锁分析显示, 该基因位于微卫星标记SSR101和SSR63.9之间, 分别相距2.3和0.8 cM; 并与微卫星标记SSR17呈共分离. 该基因暂定名为wp(t). 相似文献
6.
水稻类病变突变体lmi的鉴定及其基因定位 总被引:9,自引:0,他引:9
水稻类病变突变体lmi(lesion mimic initiation)是从γ射线诱变的籼稻品种中籼3037的后代中发现的,属于起始型的类病变突变体. 无菌培养、台盼蓝染色及遮光实验表明, 该突变体受光照控制细胞自主性死亡. 遗传分析表明, 该突变性状由一对隐性基因控制. 利用lmi和93-11杂交的F2群体对lmi基因进行初步遗传定位, 发现该基因定位于水稻第8号染色体着丝粒附近的两个微卫星分子标记RM547和RM331之间, 与两者遗传距离分别为1.2和3.2 cM. 进一步利用这两个标记之间发展的CAPS标记 C4135-8, C4135-9及C4135-10对lmi基因进行精细的遗传定位, 结果表明, lmi基因与标记C4135-10共分离. 这一结果为克隆lmi基因奠定了基础. 相似文献
7.
一个水稻短生育期突变体sgp(t)的遗传分析及基因定位 总被引:1,自引:0,他引:1
在优良迟熟恢复系明恢86的转基因后代中, 发现了一个非T-DNA插入引起的短生育期突变体(暂命名short growth period, 简称sgp(t)). 该突变体对光周期反应不敏感, 在不同生态区域与不同播种期, 平均抽穗期(40.9±2.1)~(62.4±5.2) d, 比野生型明恢86早35~50 d. 通过对sgp(t)突变体与29个不同遗传背景的亲本(包括感光和非感光的籼稻、粳稻及爪哇稻品种)杂交后代抽穗期分析, 结果发现, 在福州市夏季种植(4月30日播种), F1抽穗均表现较迟熟亲本 早, 而较sgp(t)略迟, 平均抽穗期(52.0±1.3)~(63.4±2.3) d, 表明sgp(t)是一个不完全显性突变体, 能够显著地缩短水稻的生育期. 进一步分析sgp(t)突变体与野生型明恢86, 93-11, 闽恢3301和博白B等4个品种的杂种F2群体抽穗分布发现, 分离群体后代中出现极早熟、较早熟和迟熟3种类型, 其极早熟和较早熟植株数之和与迟熟植株数之比符合3:1, 进一步表明sgp(t)由一对不完全显性基因控制. 以F2代(sgp(t)×93-11)中的极早熟株和迟熟株为定位群体, 应用微卫星标记将sgp(t)基因定位在第6染色体的RM3628和RM439之间, 随后利用已经公布的水稻基因组序列, 在sgp(t)基因附近区域新开发了6个标记, 将sgp(t)基因进一步定位在NSSR0617~NSSR0683之间, 遗传距离分别为0.5和0.6 cM, 物理距离约436 kb. 定位结果显示sgp(t)不同于目前报道的所有早熟和迟熟基因, 是一个控制水稻生育期的新基因. 相似文献
8.
水稻幼穗分化受阻突变体lhd的遗传分析与基因定位 总被引:5,自引:0,他引:5
从圭630/台湾粳的F1花药培养后代群体中发现了水稻幼穗分化受阻突变体lhd(leafy head), 其植株明显矮化, 叶片细小且丛生, 始终停留在营养生长阶段.遗传分析表明, lhd受一对隐性基因控制, 该突变基因拟命名为lhd(t).显然, LHD(t)是控制花序分化的关键基因.以lhd杂合体与明恢77和京花8号杂交, 建立了2个F2群体.在与京花8号杂交的F2群体中, 部分lhd植株表现出"中间类型", 说明遗传背景会影响突变性状的表现.利用已公布的水稻RM系列SSR标记及自行设计的SSR标记, 结合BSA和突变株(共498株)分析, 将LHD(t)基因定位在第10染色体长臂端, 其中标记SSR1, RM269, RM258, RM304和RM171位于一侧, 与LHD(t)的图距分别为6.4, 16.6, 18.4, 22.2和26.3 cM; SSR4和SSR5位于另一侧, 与LHD(t)的图距分别为0.6和2.2 cM.该结果为进一步对LHD(t)的克隆和表达研究奠定了基础. 相似文献
9.
衰老是一个主动的过程,包括细胞结构、新陈代谢、基因表达有序发生变化,对植物生存繁衍具有积极的意义,但早衰则对农业生产会产生重要影响,不利于经济性状的获得,研究早衰的分子机理具有重要的意义.利用甲基磺酸乙酯诱变恢复系缙恢10号获得了一个叶片早衰突变体,5叶期前叶片正常绿色,从6叶至剑叶每张叶片从叶尖到叶基部逐渐衰老,叶绿体膜结构破坏、光合色素含量和光合能力及可溶性蛋白含量显著下降,SOD酶活性异常.遗传分析显示该突变性状受一显性单基因控制,暂命名为psl3(presenescing leaf3).利用分子标记将PSL3基因定位于第7染色体标记c7sr1与ID10之间,物理距离为53.5kb,为该基因的图位克隆奠定了基础. 相似文献
10.
水稻稀穗突变体的遗传分析及基因的精细定位 总被引:1,自引:1,他引:1
水稻稀穗突变体lax影响花序发育的主要特征是: 穗轴上能形成正常的一次、二次枝梗, 侧生小穗的发育被完全阻断, 只在枝梗的顶端发育形成单个小穗, 且小花呈多种异常变异. 突变体与粳稻品种W11杂交获得F2分离群体. 以该F2分离群体为基础, 根据水稻基因组序列设计微卫星引物和CAPS标记, 并进行连锁分析, 将稀穗基因定位在水稻第1染色体长臂的CAPS标记HB2和微卫星标记MRG4389之间, 与两标记间的距离均为0.14 cM, 与CAPS标记LZ1共分离. RT-PCR分析结果显示, 在稀穗突变体中与花器官发育相关的B功能基因OsMADS2, OsMADS4, OsMADS16 以及C功能基因OsMADS3的转录水平明显下降, 而A功能基因 RAP1A的转录水平未受到影响. 相似文献
11.
水稻叶片形态相关突变体的挖掘是进行水稻功能基因组学研究和株型改良的重要基础.本研究从60Co-γ辐射的籼稻粤丰B后代中鉴定一个卷叶突变体,命名为rl11(t),该突变体表型为株高降低、叶片卷曲变窄、叶脉数目减少且发育异常,同时对生长素的敏感性降低.遗传分析表明,该突变性状受一个隐性单基因控制.利用SSR标记将卷叶基因定位在位于水稻第4染色体上RM6089和RM124之间,在该基因附近区域发展了32对新的STS标记,将Rl11(t)精细定位在BAC克隆AL606645上STS4-25和STS4-26之间,物理距离约为31.6kb,为最终克隆目标基因奠定了基础. 相似文献
12.
植物叶片是最主要的光合作用器官. 作物叶片生长、发育和衰老的分子机理研究与提高作物产量形成密切相关. 利用水稻中花11号经Co60辐射产生的早衰叶突变体分别与南京6号和南京11号杂交的F1及其衍生的F2群体, 对早衰叶突变体进行了遗传分析和基因定位. 结果表明, 该早衰叶突变体是由一隐性核基因psl1控制, 利用SSR标记把psl1定位在水稻第2染色体上. 利用已经公布的水稻基因组序列, 在该基因附近区域发展了34对新的STS标记, 对psl1进行了精细定位. 以此为基础, 构建了覆盖psl1区域的BAC重叠群, 并把目标基因定位在一个约48 kb 的区段上, 为最终克隆目标基因奠定了基础. 相似文献
13.
突变体es-t 是经EMS诱变处理日本晴后筛选获得的, 该突变体主要表现为叶片从苗期开始黄化, 叶绿素含量显著降低, 随着其生长发育发黄的叶片伴有铁锈色的小斑点, 尤以叶尖和叶缘为甚, 表现严重的早衰现象, 故将之命名为es-t (early senescence-temporary). 扫描电子显微镜显示, 突变体叶片表面比野生型的光滑, 且气孔周围缺乏硅质化突起; 另外, 突变体的叶绿体发育不正常, 含有大量大颗粒的淀粉粒; 组织切片则显示突变体的厚壁细胞及维管束的发育表现异常. 遗传分析表明, es-t 为新发现的早衰突变体, 受一隐性基因控制, 借助图位克隆的手段将之定位于42.1 kb 的物理区间内, 为进一步克隆该基因并阐明叶片早衰的分子机制奠定基础. 相似文献
14.
两个来源于野生稻的抗褐飞虱新基因的分子标记定位 总被引:18,自引:0,他引:18
选用抗源来自药用野生稻(Oryza offcinalis Wall)的抗褐飞虱品系B5为父本,与感虫品种台中本地1号(TN1)杂交,随机选取167个F2单株构成定位群体。运用RFLP技术,采用集团分离分析法(bulked segregant analysis,BSA),对水稻抗褐飞虱基因进行分子标记定位。于第3和第4染色体找到与抗褐飞虱基因连锁的RFLP标记。构建了连锁标记附近区域的RFLP遗传连锁图谱,对这两个抗位点进行了QTL(quantitative trait locus)分析,将这两个抗褐飞虱基因分别定位于第3染色体的G1318和R1925,第4染色体的C820和S11182之间。与已报道的水稻抗褐飞虱基因位点相比较,表明这两个抗褐飞虱基因是新的抗性位点。抗褐飞虱基因新位点的发现和分子标记的建立,为水稻抗虫分子标记辅助育种和抗褐飞虱基因克隆打下了良好基础。 相似文献
15.
一个水稻大叶角度突变体lla的遗传分析及基因克隆 总被引:6,自引:0,他引:6
突变体是遗传学研究的基本材料. 利用突变体克隆水稻基因, 并进而研究基因的生物学功能是水稻功能基因组学的重要研究内容. T-DNA标签法是众多克隆植物基因方法的一种. 其优点是一旦确定突变性状由T-DNA插入引起, 就可以通过测定T-DNA的旁侧序列而快速分离到相应的突变基因. T-DNA标签法已广泛应用于拟南芥基因克隆中, 据统计有40%的拟南芥突变基因是用T-DNA标签法克隆的[1]. 近年来, 国内外众多研究人员采用不同的T-DNA标签系统构建了大量的水稻T-DNA插入突变体库[2~6]. 目前, 已有3例用T-DNA标签法成功分离水稻基因的报道[7~9]. ...... 相似文献
16.
水稻的包穗现象主要是由倒一节间缩短造成的. 阐明包穗形成的分子机制, 对解决水稻不育系的包穗问题, 创造水稻新种质具有重要意义. 我们在籼稻品种明恢86 的组织培养后代中获得了1 个包穗突变体, 命名为esp2(enclosed shorter panicle 2), 其穗部被剑叶叶鞘完全包裹, 倒一节间几乎完全退化, 而其余各节间长度则没有明显改变. 遗传分析表明, esp2 受一对隐性基因控制, 能稳定遗传且不受遗传背景的影响. 显然, ESP2 是控制水稻倒一节间发育的一个关键基因. 利用esp2 与粳稻品种秀水13 杂交的F2 群体以及SSR 和InDel 标记, 将ESP2 精细定位在1 号染色体短臂末端一个14 kb 的区域内. 根据水稻基因组序列的注释, 该区域内只存在1 个完整的基因, 亦即一个假定的磷脂酰丝氨酸合成酶(putative phosphatidylserine synthase)基因. 对野生型和突变体的测序分析结果表明, 该基因内部插入了一个5287 bp 的反转座子序列. 因此, 我们将该基因作为ESP2 的候选基因. 本研究结果为ESP2 基因的克隆和功能分析奠定了基础. 相似文献
17.
一个水稻窄叶突变体的鉴定和基因定位 总被引:5,自引:1,他引:5
从粳稻品种“中花11”转基因后代中发现了一个窄叶突变体. 突变体表现为植株矮化、生育期延迟、叶片变窄及内卷和结实率降低等一系列突变表型. 窄叶突变体的剑叶在饱和光下净光合速率显著低于野生型, 在灌浆期剑叶的气孔导度和蒸腾速率也明显低于野生型. 遗传学分析表明, 该窄叶突变体表型受一对隐性核基因控制. 通过对突变体T1代和T2后代的分子检测发现, 该突变体表型非T-DNA插入引起. 利用籼粳杂交F2群体对突变体位点进行了基因定位, 将其定位在第12染色体长臂上SSR标记RM7018和RM3331之间. 与经典的形态标记nal3(cul3)位于相同染色体区段, 故将该突变体暂定名为nal3(t). 随后, 利用已公布的水稻序列和SSR标记, 开发了6对新的STS标记, 进一步将窄叶基因nal3(t)定位在NS10和RH12-8之间, 遗传距离分别为0.58和0.26 cM, 物理距离约136 kb, 为进一步克隆nal3(t)打下了基础. 相似文献
18.
水稻穗部突变体Cl的形态和定位分析 总被引:4,自引:0,他引:4
簇生穗突变体Cl表型为多数枝梗顶端有2或3个小穗簇生在一起. 利用扫描电子显微镜观察显示, Cl的功能与水稻枝梗顶部的发育有关, 同时Cl影响了顶端小穗的伸长; 而Cl突变体中穗粒数有一定降低, 提示Cl基因可能对水稻穗粒数也有一定的影响. 分别利用Cl与中花11及Cl与浙辐802 杂交的F2群体对Cl位点进行遗传定位, Cl位点初步定位在第6染色体的CAPS标记CK0214和SS0324之间. 为了进一步精细定位Cl位点, 在CK0214和SS0324之间发展了5个CAPS标记, 连锁分析表明, Cl与其中2个标记R0674E和C12560紧密连锁, 遗传距离分别为0.2和2.1 cM, 并且Cl被定位在这两个标记之间. 以此为起点, 构建覆盖Cl基因区域的PAC 重叠群, 两个PAC克隆AP004571和AP004236将Cl位点覆盖, 物理距离为196 kb, 为最终克隆Cl基因奠定了基础. 等位性测定显示, Cl与另一个水稻簇生穗突变体Cl2是等位突变. 相似文献
19.
水稻抗白叶枯病基因Xa—4的精细定位及其共分离分子标记 总被引:3,自引:0,他引:3
利用Xa-4的近等基因系IR24和IRBB4构建F2群体,通过抗性鉴定筛选出感病植株,利用水稻高密度图谱上的分子标记和候选抗病基因片段进行分析,构建了抗白叶枯病基因Xa-4的遗传图谱,并获得了与Xa-4共分离的分子标记RS13。构建的遗传图谱还包含另外5个紧密边锁的分子标记,其中 1个是PCR标记,4个是国际通用的水稻高密度图谱上的RFLP标记。为图位克隆Xa-4打下的基础,也为分子标记辅助选择育 相似文献
20.
水稻抗白叶枯病基因Xa-4的精细定位及其共分离分子标记 总被引:2,自引:0,他引:2
利用Xa-4的近等基因系IR24和IRBB4构建F_2群体,通过抗性鉴定筛选出感病植株,利用水稻高密度图谱上的分子标记和候选抗病基因片段进行分析,构建了抗白叶枯病基因Xa-4的遗传图谱,并获得了与 Xa-4共分离的分子标记 RS13.构建的遗传图谱还包含另外5个紧密连锁的分子标记,其中1个是PCR标记,4个是国际通用的水稻高密度图谱上的RFLP标记.为图位克隆Xa-4打下了基础,也为分子标记辅助选择育种提供了有效的分子标记。 相似文献