首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
由于水压试验机机理建模的复杂性,很难从机理方面对其生产过程进行故障诊断,基于多向Fisher判别分析的故障诊断方法同时利用正常工况和故障条件下的数据建模,具有很强的诊断能力.为了解决应用此类方法遇到的不等长周期问题,根据水压试验过程的数据特性提出了子时段首部数据等长法将所有批次调整成平均长度.在此基础上对每个子时段分别建立MFDA模型,并结合递推思想将三个时段的诊断结果密切结合以提高诊断精度.采用水压试验机实际生产过程的4个锁阀故障数据对该方法进行测试,结果验证了该方法的有效性.  相似文献   

2.
针对多向主元分析(MPCA)在间歇过程故障监测应用中经常面临的分段不准确问题,提出了一种新的基于支持向量数据描述(SVDD)的两步分段方法,从而提高分段的准确性和故障监测精度。第一步分段采用机理知识与现场数据相结合的思想,对MPCA模型的负载矩阵进行修正。将采样时间引入负载矩阵中,增大模型差异性,从而避免了故障数据导致的分段错误。第二步利用支持向量数据描述方法将初步划分的各子时段进一步细分,严格区分各子时段中的稳定与过渡时段,进一步提高分段的准确性。同时,给出基于上述分段技术的间歇过程在线故障监测算法,可以实时地监测现场数据。最后将该方法应用于青霉素间歇过程的在线监测,结果表明:该方法能够细致刻画过渡过程信息,比常规MPCA方法能够更早地检测出故障,并避免了误报。  相似文献   

3.
针对间歇过程多时段特性,提出一种基于平行因子分解2(PARAFAC2)的多时段间歇过程时段划分方法。首先对每一个时间片矩阵进行平行因子分解2(PARAFAC2)建模,得到时间片矩阵的模型控制限,然后从间歇过程初始时刻开始,按照时序依次将每个时间片添加到时间块并进行PARAFAC2建模,得到时间块矩阵的模型控制限后,通过评估时间片和时间块模型控制限的差异性来确定初始时段划分点,最后利用时段评价划分指标(PPCI)获取最佳的时段划分结果。通过青霉素发酵过程仿真实验验证了本文方法的有效性。  相似文献   

4.
针对邻域保持嵌入(NPE)算法只通过欧氏距离挑选近邻带来的特征提取不充分导致故障诊断效果不佳的问题,将扩散距离(DD)与NPE算法相结合,提出了一种基于扩散距离的邻域保持嵌入(DDNPE)算法的故障诊断新方法.该方法首先发掘嵌入在原始高维数据的内在流行结构,进行数据降维,然后通过学习原始数据的潜在几何结构提取本征信息,并保持数据流行上的局部结构不变,避免了NPE算法只通过欧式距离挑选邻域带来的特征提取不充分的问题,最后利用T2和SPE统计量检测故障,并用变量贡献图法诊断出故障变量.通过青霉素发酵过程仿真结果验证了所提方法的有效性.  相似文献   

5.
基于多向Fisher判据分析的间歇过程性能监控   总被引:8,自引:0,他引:8  
针对传统的间歇过程监控方法,在建模时只利用正常工况下的数据,其故障诊断能力并不令人满意的问题,提出了多向Fisher判据分析(MFDA:Multiway Fisher Discriminant Analysis)方法,用于间歇过程的监控.该算法同时利用正常工况和故障条件下的数据进行建模,其故障诊断能力要优于MPCA(Multiway Principal Component Analysis),在故障检测的同时也实现了故障的诊断.通过对实际工业链霉素发酵过程数据分析,表明该算法是可行的,可以获得较满意的故障诊断结果.  相似文献   

6.
针对间歇生产过程的特点及多向部分最小二乘在故障诊断中存在的问题,提出了一种多向神经网络部分最小二乘方法,实现对间歇过程的在线监控和故障诊断。该方法结合了部分最小二乘的鲁棒性和神经网络表现输入输出非线性关系的能力,提高了模型的预测精度。将此方法应用于监测青霉素发酵过程中,仿真结果表明,它比传统多向部分最小二乘方法能更及时、准确地检测到故障。  相似文献   

7.
针对间歇过程的时段划分问题,提出了一种滑动时间窗加权MPCA方法,利用了相邻观测数据所蕴含过程信息的相关性,降低了过程扰动、观测噪声以及多阶段间过渡过程等不确定性因素对时段划分的影响,进而改善了间歇过程的监测效果。将所提出的方法应用于青霉素发酵过程阶段划分和监测,实验结果表明,所提出方法与常规MPCA相比,能够得到更好的效果。  相似文献   

8.
针对间歇过程的多阶段问题,提出了一种新的划分阶段策略,可以将多阶段的数据进行准确的聚类,得到精确的阶段数目,避免陷入局部最优,提高了建模精度和故障检测准确度。首先采用不同展开方法相结合的方式对三维的间歇过程数据进行处理,消除了数据预估问题;其次结合图划分准则利用谱聚类方法将处理后的数据进行准确的阶段划分,并运用PCA建模方法分别对每一类进行建模;最后通过合适的模型对数据进行在线监控。通过青霉素仿真过程验证了本文方法的有效性。  相似文献   

9.
多向主元分析(MPCA)是间歇过程最常用的监控方法,但缺点是需要对未来测量值进行估计。针对这一问题,提出了基于不同展开方式上的独立元分析(ICA)的在线监控方法。在测量数据含有非高斯潜隐变量的情况下,ICA是比PCA更有效的特征提取算法。获得独立元(ICs)后,将一种新的基于ICA的混合相似因数分析用于间歇过程的故障诊断中。通过在青霉素生产过程的成功应用,验证了所提出方法的可行性和有效性,具有比较好的监测效果及满意的故障识别能力。  相似文献   

10.
针对间歇过程数据的多模态与动态特性共存带来的故障检测问题,提出一种基于加权双近邻标准化(WDNS)的稀疏加权邻域保持嵌入(SWNPE)算法.首先,在寻找样本双层近邻的基础上加权得到加权双近邻集,用加权双近邻集信息标准化样本,将多模态数据处理为单一模态分布,消除多模态中心点差异,解决多模态特性;然后,考虑到NPE算法不能...  相似文献   

11.
改进的MPCA方法及其在批过程故障诊断中的应用   总被引:4,自引:0,他引:4  
基于传统的多方向主元分析(MPCA)常会导致误诊断,且对批生产过程难以保证在线状态监测和故障诊断的实时性,提出了一种改进的MPCA方法,该方法采用多模型非线性结构代替传统MPCA单模型线性化结构,克服了后者不能处理非线性过程和实时性问题,并避免了MPCA在线应用时预报未来测量值带来的误差,提高了批过程性能监测和故障诊断的准确性.  相似文献   

12.
针对传统MPCA间歇过程故障诊断方法存在的在线数据不完整及实时性差缺陷,提出一种基于MFDA-PCA间歇过程的在线批次故障诊断方法.通过MFDA对在线批次正常部分与历史批次进行相似度分析,利用相似度最优的批次建立PCA模型,对在线批次数据进行实时分析,完成对整批生产过程在线监控及故障诊断的任务.最后以青霉素发酵仿真实验验证了该方法的有效性和快速性.  相似文献   

13.
目的 在实际应用中采集的原始多模态故障数据通常是包含大量噪声和冗余信息的非线性数据,如何从不同故障模态中提取有效的非线性故障特征仍是一个挑战性的问题。方法 提出了一种鉴别流形敏感的跨模态故障诊断方法,在该方法中首先借助相关分析理论在跨模态故障空间中构建了不同模态间的相关系数,并通过理论推导获得了相关系数的等价优化模型,然后利用局部近邻图构建了鉴别流形敏感散布,进而通过最大化不同模态间的相关性和最小化鉴别流形敏感散布,形成了鉴别流形敏感的跨模态故障诊断模型,并且在理论上推导出了该优化模型的解析解,从而能够从不同模态的故障数据中学习强鉴别力的非线性故障特征。结果 在德国帕德博恩轴承数据集和多模态轴承故障数据集上设计了针对性实验,实验结果显示在少量故障样本用于训练时即可获得良好的诊断准确性。结论 提出的方法是一种有效的跨模态故障诊断方法。  相似文献   

14.
针对间歇过程的多模式划分问题,提出了一种基于主角度相似度比较的多模式划分新方法,有效克服了噪声或冗余数据对模式划分的影响.该方法的基本思想是利用PCA对间歇数据按时间轴进行主成分建模,然后利用主角度这一用于比较子空间相似度的方法进行主元模型相似度比较,从而对各个模型和过渡过程进行有效辨识和划分;在此基础上,对上述方法进行了深入分析,改进并完善了主角度相似度划分标准,使这一方法更趋完善.仿真结果检验了所提方法的有效性.  相似文献   

15.
由于化工生产过程数据具有强非线性和非高斯性特征,提出了核主元分析与核独立元分析相结合的可用于化工过程故障诊断的双核独立元分析算法,该算法利用核主元分析的非线性核函数把数据从原空间映射到高维特征空间进行白化预处理,再用核独立元分析算法进行独立元分析,在特征空间中获得故障监控统计量,计算控制置信限,达到有效的故障诊断.提出的算法应用在连续搅拌反应釜过程中,结果表明,该算法对化工过程故障诊断能有效提高准确度、降低漏报率和误报率.  相似文献   

16.
为揭示滚动轴承故障振动信号的典型特征规律,结合变分模态分解(VMD)与深度置信网络(DBN)的优势,提出轴承振动信号特征的提取方法.将信号先进行基于VMD的分解,根据各模态分量频谱图确定其模态参数,得到若干个模态分量.然后,基于DBN强大的特征提取能力,采用DBN无监督特征提取方法,将得到的模态分量映射到一维,并融合各分量的DBN特征形成特征向量,将其作为粒子群优化支持向量机(PSO-SVM)的输入进行故障诊断.实验验证与对比分析证明了VMD-DBN方法的可行性与优越性.  相似文献   

17.
特征提取在工况监测与故障诊断中的应用   总被引:4,自引:0,他引:4  
随着信息技术和计算机网络技术、虚拟仪器等在企业的普及和应用,基于网络技术的未来企业全球制造化模式的建立,使日趋大型化、复杂化集成化生产设备的远程工况监视,远程故障诊断成为重要的研究课题。生产现场工况信息的自动检测、数据采集和存储是故障诊断系统的基础和起点,而对检测信息进行加工、变换和特征分析,提取敏感的故障征兆是诊断系统实现故障可靠诊断的关键之一。阐述了机械故障诊断的理论方法及特点,分析了信号的特征分析方法——时域分析方法,频域分析方法,联合时—频分析方法等多种信号处理方法的特征分析特点及其在机械工况监到与故障诊断分析过程中的工程应用。简要介绍了工况监测中特殊的时变性随机机械故障信号的分析与处理方法。  相似文献   

18.
递推批量最小二乘在直升机电动舵机故障诊断中的应用   总被引:6,自引:0,他引:6  
针对批量最小二乘在线辨识Volterra级数存在计算量大,数据存储空间占用多的不足,提出了一种基于递推批量最小二乘的辨识方法。该方法通过固定观测矩阵的维数来控制数据存储空间的占用,利用递推辨识的方法避免了对矩阵直接求逆,减小了计算量。针对监测对象处于稳定工作状态时,因观测数据非常相近容易导致观测矩阵出现病态的现象,引入影响因子的概念对观测数据进行取舍,以增强辨识数值的稳定性。通过在直升机电动舵机故障诊断中的实际应用证明了该方法的有效性,为基于非线性频谱分析的在线故障诊断技术提供了一个重要途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号