首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
利用X射线衍射和磁性测量研究Co80+xZr20-x(x=0,1,2,3,4)合金、 快淬薄带的结构与磁性. 结果表明, 所有样品的比饱和磁化强度均较大, 且在实验范围内随退火温度的升高而增加; 经750℃热处理2 h后, Co81Zr19样品的比饱和磁化强度达到最大值128 (A·m2)/kg; Co82Zr18快淬样品在25 m/s速率下的矫顽力最大, 为60 kA/m, 根据该样品中Co5Zr相的含量较大可知, Co5Zr相为Co-Zr合金的硬磁相; 由初始磁化曲线可知, 所有样品的矫顽力机制为成核模型.   相似文献   

2.
研究了热处理气氛对快淬Nd10Fe79Zr1Co4B6合金相组成和磁性能的影响.结果表明:Nd10Fe79Zr1Co4B6快淬合金薄带在热处理时通入氮气会发生吸氮反应,相结构由纯氩气热处理时的Nd2Fe14B和α-Fe两相组织转变为Nd2Fe14B、NdBN2和α-Fe三相组织,且随着氮气分压的提高,热处理后样品中α-Fe相和NdBN2相的体积分数逐渐增多.Nd10Fe79Zr1Co4B6样品的剩磁Br、内禀矫顽力iHc和最大磁能积(BH)m ax随着热处理时氮气分压的提高而下降.  相似文献   

3.
采用单辊快淬法制备Fe81-xCoxZr9B10(x=0,2,4,6)系非晶合金,对该系非晶合金的非晶形成能力及磁性能进行研究.利用X射线衍射(XRD)和振动样品磁强计(VSM)测试合金的结构及磁性能.研究结果表明:Fe81-xCoxZr9B10(x=0,2,4,6)合金在快淬速率为30 m/s时完全形成非晶.随Co含量的增加比饱和磁化强度(Ms)先增加后减少.  相似文献   

4.
用单辊快淬法制备Fe_(74)Nb_3Y_3B_(20)非晶合金,在不同温度下对合金进行热处理,利用差热分析仪(DTA,TG/DTA-6300)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)和振动样品磁强计(VSM)等测试方法对合金的微观结构和磁性能进行研究.结果表明,合金经热处理后有α-Fe相和少量的Fe_(23)B_6和Fe_2B析出,热处理后合金饱和磁化强度比淬态的高,矫顽力都比较小,670℃退火的合金具有最高的饱和磁化强度.  相似文献   

5.
采用单辊快淬法制备Fe40Co40Zr7V2B9Ta2非晶合金薄带,并对该合金在不同温度下进行热处理.利用差热分析(DTA)、X射线衍射(XRD)、扫描电镜(SEM)和振动样品磁强计(VSM)测量合金的热性能、微观结构及磁性能.结果表明:Fe40Co40Zr7V2B9Ta2合金的初始晶化产物为α-FeCo相,高温时析出ZrCo3B2,Co23Zr6和ZrB2相;薄带横断面的形貌在快淬态和300℃退火后,合金的自由面呈网状结构,贴辊面呈枝状结构;高于550℃退火,横断面呈颗粒状;550℃退火后合金的矫顽力(Hc)最小,高于550℃退火,Hc随退火温度的升高而增大.  相似文献   

6.
系统研究了快淬Cox/Cu100-x(5≤X≤30)合金的磁性以及退火处理对磁性的影响。随退火温度的上升,Co颗粒在长大。当Co含量增加时,饱和磁化强度Ms和箸顽力Hc增大。Co含量少的样品,退火处理对磁化曲线影响大,Co含量多的样品与之相反。随退火温度TA升高,矫顽力Hc和剩余磁化强度Mr增大。在特征冻结温度(300K)下观察到一个大热滞效应。这个热滞温度远大于在ZFC曲线的峰值温度,这表明磁性颗粒的尺寸及形状有一较宽的分布。  相似文献   

7.
高温稀土永磁合金Sm_2(Co,Cu,Fe,Zr)_(17)   总被引:1,自引:0,他引:1  
利用粉末冶金的方法研制了 3种成分为Sm (CobalFe0 .2 4Cu0 .0 8Zr0 .0 2 7) 7.0 ,Sm (CobalFe0 .2 7Cu0 .0 5Zr0 .0 2 7) 7.0 ,Sm(CobalFe0 .2 6Cu0 .0 5Zr0 .0 2 6) 7.0 的高温永磁合金 ,并对其磁性能、温度稳定性和显微结构进行了分析 .研究结果表明 :常温时 ,3种永磁合金都具有较高的磁性能 ,其中 ,合金样品Sm (CobalFe0 .2 7Cu0 .0 5Zr0 .0 2 7) 7.0 的内禀矫顽力 (2 16 5 .6kA·m- 1 )和磁能积 (2 12 .0kA·m- 3 )最大 ;2 0 0℃时 ,3种合金的磁性能降低 ,但仍具有较大值 ;增加Co和Fe的含量 ,可提高材料的剩磁 ,当Zr的含量较大时 ,合金的矫顽力较高 ;3种磁体的温度系数都较低 ,最高使用温度均在 40 0℃以上 ,大大高于一般商用磁体的使用温度 ;增加Sm ,Co ,Cu的含量和减少Fe的含量可以提高材料的温度稳定性 ;合金中含有Sm2 (Co,Fe) 1 7主相、Sm(Co,Cu) 5相、Zr的化合物等 ;Sm(Co,Cu) 5相、单质Zr、晶粒边界等钉扎畴壁 ,使合金具有较高的矫顽力 .  相似文献   

8.
利用粉末冶金的方法研制了3种成分为Sm(Cobal Fe0.24 Cu0.08 Zr0.027)70,Sm(Cobal Fe0.27 Cu0.05 Zr0.027)7.0,Sm(Cobal Fe0.36 Cu0.05 Zr0.026)7.0的高温永磁合金,并对其磁性能、温度稳定性和显微结构进行了分析.研究结果表明常温时,3种永磁合金都具有较高的磁性能,其中,合金样品Sm(Cobal Fe0.27 Cu0.05 Zr0.027)7.0的内禀矫顽力(2 165.6kA.m-1)和磁能积(212.0 kA.m-3)最大;200℃时,3种合金的磁性能降低,但仍具有较大值;增加Co和Fe的含量,可提高材料的剩磁,当Zr的含量较大时,合金的矫顽力较高;3种磁体的温度系数都较低,最高使用温度均在400℃以上,大大高于一般商用磁体的使用温度;增加Sm,Co,Cu的含量和减少Fe的含量可以提高材料的温度稳定性;合金中含有Sm2(Co,Fe)17主相、Sm(Co,Cu)5相、Zr的化合物等;Sm(Co,Cu)5相、单质Zr、晶粒边界等钉扎畴壁,使合金具有较高的矫顽力.  相似文献   

9.
分别采用电弧熔炼和机械合金化法制备Nd60 Fe30-xZrxAl10(x=5,10,15,20)晶态和纳米非晶态合金,并利用X射线衍射仪、振动样品磁强计等对制备的晶态合金和纳米非晶态合金的结构及其磁性能进行分析,研究Fe和Zr相对含量的变化对合金相的组成及磁性能的影响.结果表明:Nd60 Fe30-xZrxAl10(x=5,10,15,20)合金晶态及纳米非晶态合金均显示软磁性;对于晶态样品,随着Zr含量的增加,样品的磁化强度逐步降低;对于纳米非晶态合金,随着Zr含量的增加,合金的饱和磁化强度降低;相同成分的纳米非晶态合金的饱和磁化强度高于相应的晶态合金的饱和磁化强度.Nd60Fe20Zr10Al10混合粉末球磨100 h后达到了完全非晶化,说明Nd60 Fe20Zr10Al10有较好的非晶形成能力.  相似文献   

10.
采用单辊快淬法制备Fe81Zr9-xNbxB10(x=2,4,6)系非晶合金,并对该系非晶合金进行不同温度热处理.利用X射线衍射(XRD)和振动样品磁强计(VSM)测试合金的结构和磁性能.实验表明,α-Fe铁磁相析出的起始晶化温度随Nb含量的增加而升高.快淬态合金的比饱和磁化强度(Ms)随Nb含量的增加而减小.三种合金的Ms均随退火温度的升高而增大,这与铁磁和反铁磁的交换耦合作用有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号