共查询到18条相似文献,搜索用时 93 毫秒
1.
以ZSM-5、SiO2-Al2O3和Al2O3为催化剂,在连续流动固定床反应器中,氨与呋喃催化合成吡咯。用程序升温氨脱附法(NH3-TPD)测定了催化剂表面相对酸强度及酸量分布,筛选出了催化活性好和选择性高的SiO2-Al2O3-d硅酸铝催化剂,并对金属氧化物进行了改性。在反应温度为425~435℃、n (AM):n (FN)为10:1以及催化剂负荷(以呋喃计)为16.6 mmol /(h•g)的条件下,吡咯的收率可达90%以上。 相似文献
2.
3.
用浓硫酸,对甲基苯磺酸和硫酸铝分别催化合成α-呋喃丙烯酸酯,探讨了催化剂的种类,用量以及反应时间对α-呋喃丙烯酸与常见醇的酯化反应的影响. 相似文献
4.
5.
6.
7.
采用固定床管式反应器研究了糠醛脱羰催化剂的制备条件,通过对载体,钯含量,焙烧温度,还原温度的研究,指出了糠醛气相脱羰的最佳参数值。 相似文献
8.
9.
10.
用浓硫酸,对甲基苯磺酸和硫酸铝分别催化合成.呋喃丙烯酸酯,探讨了催化剂的种类,用量以及反应时间对α-呋喃丙烯酸与常见醇的酯化反应的影响. 相似文献
11.
为了确定和描述平面五和六员环分子的几何,本文提出键长采用对应的标准键长,环键角用多重黄金分割技巧优化到该键角与对应的标准键角间的残差平方和最小。用该法计算了呋喃、吡咯和香豆素的环内键角,计算结果与实验值很接近。 相似文献
12.
催化剂的合成方法及配比对CVD法制备碳纳米管的影响 总被引:3,自引:0,他引:3
用离子注入法、简单混合法和水热晶化法分别制备了片状负载型系列、粉状混合型系列及粉状负载型系列催化剂.用3种系列催化剂通过CVD法分别制备了碳纳米管粗产物,用TEM和SEM检测手段对粗产物形貌进行了观察.结果表明,片状负载型催化剂:当Fe(Ⅱ)离子注入能量为25 keV、剂量为1×1016cm-2时其催化活性较高,制得的碳纳米管含量较多,管径均匀(约20 nm),但粗产物数量少;粉状混合型催化剂(Co/石墨):当纳米Co粉比例为15%时具有一定的催化活性,CVD法制备碳管有少量管径不一的碳管生成;水热法合成的粉状负载型催化剂(NiO/SiO2)分散性好、催化活性高,当硅-镍比为1:12时制备的碳纳米管含量高,管径细而均匀(10~16 nm),并且粗产物数量较多. 相似文献
13.
以固体酸为催化剂进行醇酸树脂合成反应的研究,采用均匀实验设计方法,考察了载体种类、酸种类、酸浓度、反应温度对合成醇酸树脂的固体酸催化剂催化性能的影响,并由逐步回归法对结果进行回归运算,得到了醇酸树脂酸价的回归模型为:y=1 052.523-8.798x1-23.723x2-4.209x4,计算结果表明,合成醇酸树脂固体酸催化剂的制备最优工艺条件为:载体SiO2、酸H2SO4、酸浓度1.00 mol/L、催化剂使用温度200℃,在上述条件下合成醇酸树脂的固体酸催化荆的活性最高. 相似文献
14.
柴油深度加氢脱硫催化剂载体全硅MCM-41的合成 总被引:3,自引:0,他引:3
考察了水热合成反应条件对全硅MCM-41结构、结晶度的影响和产物的热稳定性。研究发现:改变合成母液的PH会改变MCM-41的孔径大小;在无氧条件下高温处理的最佳温度为600℃左右;所合成的全硅MCM-41具有很高的比表面积、均匀的孔径和较好的热稳定性,可用做制备加氢脱硫催化剂的载体。 相似文献
15.
以水杨醛与2-溴-4’-氟苯乙酮为原料,合成2-(4-氟苯甲酰基)苯并呋喃,进一步与酚反应,合成得到6个新的苯基醚类苯并呋喃衍生物(2a~2f),其结构经IR、1H NMR和13C NMR进行了表征. 相似文献
16.
采用黏度计、差热分析和红外光谱分析含钽呋喃树脂的黏度和固化特性,并由此确定合适的浸渍和固化工艺。研究结果表明:在45~50℃范围内,含钽呋喃树脂能保持适合浸渍的低黏度,其固化活化能为61.61kJ/mol,固化反应级数为0.9;固化宜采用阶梯式升温;固化过程中碳碳双键和醚键以及醇羟基等均发生了反应。 相似文献
17.
基于Ⅱ型c-Met抑制剂的结合模式和骨架跃迁的策略,设计、合成了两类含吡咯环系的新型c-Met激酶抑制剂.目标化合物的结构经核磁共振氢谱、质谱和高效液相色谱予以确证.生化水平的活性筛选显示化合物9a~9c对c-Met激酶均表现出良好的抑制活性,IC50小于2.1μM;化合物9a还对VEGFR-2和c-kit等激酶均表现显示出良好的抑制活性,IC50小于8.0μM.细胞水平的活性测试进一步验证了化合物9a对c-Met靶点的抑制活性.已有结果表明,吡咯衍生物9a具有作为活性骨架开展后续改造的良好潜力. 相似文献
18.
以镍铝合金粉末和适当有机聚合物粘结剂为原料 ,制备出可用于固定床加氢的颗粒状RaneyNi催化剂。X射线衍射、热重热差和原子吸收光谱分析结果表明 ,在成型合金颗粒焙烧过程中 ,合金中的NiAl3 相逐渐转化为Ni2 Al3 相。同时 ,有一小部分金属铝逐渐氧化生成α Al2 O3 ,可以提高催化剂的机械强度 ,并能抑制金属镍的氧化。催化剂活性的高压微反评价结果显示 ,固定床Raney镍催化剂的 2 辛酮加氢催化活性高于负载型镍催化剂。 相似文献