首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The T-cell receptor is necessary and sufficient for recognition of peptides presented by major histocompatibility complex molecules. Other adhesion molecules, like CD4 or CD8, play an auxiliary role in antigen recognition by T cells. Here we analyse T-cell receptor (TCR) binding using a soluble rather than a cell-bound receptor molecule. A TCR-immunoglobulin chimaera is constructed with the variable and the first constant regions of both the TCR alpha- and beta-chains linked to the immunoglobulin light-chain constant regions. This soluble TCR is expressed, assembled and secreted as an alpha beta heterodimer by a myeloma cell line transfected with the recombinant genes. Furthermore, the soluble TCR is biologically active: it specifically inhibits antigen-dependent activation of the relevant T-cell clones and thus discriminates between proper and irrelevant peptides presented by major histocompatibility complex molecules.  相似文献   

2.
D Gay  P Maddon  R Sekaly  M A Talle  M Godfrey  E Long  G Goldstein  L Chess  R Axel  J Kappler 《Nature》1987,328(6131):626-629
Mature T cells segregate phenotypically into one of two classes: those that express the surface glycoprotein CD4, and those that express the glycoprotein CD8. The CD4 molecule is expressed primarily on helper T cells whereas CD8 is found on cytotoxic and suppressor cells. A more stringent association exists, however, between these T-cell subsets and the major histocompatibility complex (MHC) gene products recognized by their T-cell receptors (TCRs). CD8+ lymphocytes interact with targets expressing class I MHC gene products, whereas CD4+ cells interact with class II MHC-bearing targets. To explain this association, it has been proposed that these 'accessory' molecules bind to monomorphic regions of the MHC proteins on the target cell, CD4 to class II and CD8 to class I products. This binding could hold the T cell and its target together, thus improving the probability of the formation of the trimolecular antigen: MHC: TCR complex. Because the TCR on CD4+ cells binds antigen in association with class II MHC, it has been difficult to design experiments to detect the association of CD4 with a class II molecule. To address this issue, we devised a xenogeneic system in which human CD4 complementary DNA was transfected into the murine CD4-, CD8- T-cell hybridoma 3DT-52.5.8, the TCR of which recognizes the murine class I molecule H-2Dd. The murine H-2Dd-bearing target cell line, P815, was cotransfected with human class II HLA-DR alpha, beta and invariant chain cDNAs. Co-culture of the parental T-cell and P815 lines, or of one parental and one transfected line resulted in a low baseline response. In contrast, a substantial increase in response was observed when CD4+ 3DT-52.5.8 cells were co-cultured with HLA-DR+ P815 cells. This result strongly indicates that CD4:HLA-DR binding occurs in this system and that this interaction augments T-cell activation.  相似文献   

3.
主要组织相容性复合体(MHC)是免疫球蛋白超基因家族中的一个大类,MHC分子作为个体标志抗原早已为大家所熟悉,因而在脊椎动物进化中扮演着不可替代的角色.到目前为止,我们已经完成了包括从真兽亚纲(胎盘动物)到非哺乳动物的部分物种,包括鸟类、硬骨鱼及软骨鱼(如鲨鱼)的MHC的基因结构图,但是由于在非哺乳动物和哺乳动物中MHC的基因结构和复杂度不一样,所以很难对非哺乳动物向哺乳动物进化的这一时间段进行有效的进化史或系统演化史研究.研究人员推测,原始MHC分子的进化最初是与发育调控需求相关的,就其进化机制及进化意义做一综述.  相似文献   

4.
5.
6.
The major histocompatibility complex(MHC)of proteins that exists in all vertebrates is encoded by a cluster of genes associated with the immune response and related functions.MHC is divided into MHC I,II,and III;MHC I is involved in antigenic presentation,binding T cell receptors,and leading ultimately to specific cellular immune responses.The complicated functions of MHC I are determined by the nature of the complex.The crystal structure of MHC I has been solved for many animals,revealing the relationship between spatial structure and function.MHC I consists of an a heavy chain and a b2m light chain,both ligated non-covalently to a complex when a peptide is bound to the antigenic-binding groove.The a heavy chain is divided into an extracellular domain,a transmembrane domain,and an intracellular domain.The extracellular domain consists of sub-regions a1,a2,and a3.The a1 and a2 together form the antigenic-binding groove and bind antigenic peptides with 8–10 amino acid residues.MHC I can form a stable spatial structure;however,it should be noted that there are differences in the structure of MHC I among animal species,including anchored amino acids in binding peptides,binding sites,molecular distance,crystallization conditions,etc.Here,progress in determination of the crystal structure of human,mouse,chicken,non-human primate,and swine MHC I is described in detail.  相似文献   

7.
F H Bach  M L Bach  P M Sondel 《Nature》1976,259(5541):273-281
We have emphasised the functional dichotomy of MHC LD and LD antigens as well as the differences in cellular responses to these antigens. Perhaps in so doing we have failed to stress adequately the similarities that exist. But while the similarities (for example skin graft rejection associated with both K and I region differences) are so very clear, the differences have best allowed our progressive understanding of MHC induced cellular responses from the perspective stressed in this article. Of greatest importance to our understanding of these transplantation antigens are the potentially differential roles for the LD and SD antigens in the complex series of events that are collectively referred to as the "allograft reaction". It has been suggested that these differences may be "merely quantitative". This possibility has been discussed repeatedly in our previous reports on the distinction of LD and SD. In fact, the great bulk of biological phenomena can be reduced to quantitative differences. It would seem to us that sufficient evidence for such differential activity exists to make the LD-SD dichotomy model an heuristically valuable one for purposes of designing future experiments. We have discussed the clinical relevance of this model elsewhere. Many authors have speculated and evidence has been gathered to suggest, that cell surface antigens associated with the MHC are important in developmental and other cell interactions. Some studies have directly addressed the question of the need for MHC compatibility to allow cell interaction to proceed optimally. It thus seems most appropriate that the genetic complex with which we are dealing has been termed the major histocompatibility complex; allowing for the literal interpretation of this term this may be the genetic region that by its influence on "tissue compatibility" may control critical cellular interactions in addition to those observed in allograft reactions. It is the simple good fortune for those whose attention was focused on this complex by transplantation problems to find themselves with a panorama of biological phenomena that require extensive experimental probing and integration, hopefully ultimately leading to an understanding of the MHC in a broader context than has to date been possible.  相似文献   

8.
Two genes in the major histocompatibility complex control immune response.   总被引:42,自引:0,他引:42  
A J Munro  M J Taussig 《Nature》1975,256(5513):103-106
  相似文献   

9.
J W Kappler  U Staerz  J White  P C Marrack 《Nature》1988,332(6159):35-40
In mice the product of the Mlsa locus is an unusual antigen capable of interaction with certain products of the major histocompatibility locus (MHC) to form a ligand for a large portion of the T-cell alpha/beta receptor repertoire, including nearly all receptors that use V beta 8.1. The presence of Mlsa/MHC during T-cell development results in the deletion of T cells that express V beta 8.1, documenting the importance of clonal deletion in establishing tolerance to self antigens.  相似文献   

10.
11.
J G Guillet  M Z Lai  T J Briner  J A Smith  M L Gefter 《Nature》1986,324(6094):260-262
T lymphocytes require a foreign antigen to be presented on a cell surface in association with a self-transplantation antigen before they can recognize it effectively. This phenomenon is known as major histocompatibility complex (MHC) restriction. It is not clear how an incalculably large number of foreign proteins form unique complexes with a very limited number of MHC molecules. We studied the recognition properties of T cells specific for a peptide derived from bacteriophage lambda cI protein. Analogues of this peptide, as well as peptides derived from other unrelated antigens which can be presented in the context of the same MHC molecule, can competitively inhibit activation of these T cells by the cI peptide. Furthermore, these unrelated antigens can stimulate cI-specific T cells if certain specific amino-acid residues are replaced. Here we suggest a model in which all antigens give rise to peptides that can bind to the same site on the MHC molecule. T-cell recognition of this site (which is presumed to be polymorphic) with or without antigen bound can explain self-selection in the thymus and MHC restriction.  相似文献   

12.
F Ronchese  R H Schwartz  R N Germain 《Nature》1987,329(6136):254-256
Mature T lymphocytes are activated by recognition of the combination of foreign protein antigen and membrane products of the major histocompatibility complex (MHC). Studies of peptide antigen binding to detergent-solubilized class II MHC molecules (Ia) have established that peptide-Ia interaction occurs in the absence of the T-cell receptor and varies according to allele-specific features of Ia molecules. The residues of immunogenic peptides thus contribute to two largely independent functions--the control of association with Ia molecules and the determination of the specificity of T-cell receptor binding. Two analogous and potentially independent functional sites have been postulated for Ia molecules--a region that controls binding to peptides and a region that interacts with T-cell receptors. Here we present evidence from functional analysis of recombinant class II molecules that these two postulated functional regions of Ia molecules do exist and can be independently manipulated, consistent with our recent demonstration of the segmental nature of Ia molecule structure-function relationships.  相似文献   

13.
K Falk  O R?tzschke  H G Rammensee 《Nature》1990,348(6298):248-251
Major histocompatibility complex (MHC) class I molecules present peptides derived from cellular proteins to cytotoxic T lymphocytes (CTLs), which check these peptides for abnormal features. How such peptides arise in the cell is not known. Here we show that the MHC molecules themselves are substantially involved in determining which peptides occur intracellularly: normal mouse spleen cells identical at all genes but MHC class I express different patterns of peptides derived from cellular non-MHC proteins. We suggest several models to explain this influence of MHC class I molecules on cellular peptide composition.  相似文献   

14.
T-cell receptors and T-cell subsets were analysed in T-cell receptor transgenic mice expressing alpha and beta T-cell receptor genes isolated from a male-specific, H-2Db-restricted CD4-8+ T-cell clone. The results indicate that the specific interaction of the T-cell receptor on immature thymocytes with thymic major histocompatibility complex antigens determines the differentiation of CD4+8+ thymocytes into either CD4+8- or CD4-8+ mature T cells.  相似文献   

15.
16.
We describe a mutant human cell line (LBL 721.174) that has lost a function required for presentation of intracellular viral antigens with class I molecules of the major histocompatibility complex (MHC), but retains the capacity to present defined epitopes as extracellular peptides. The cell also has a defect in the assembly and expression of class I MHC molecules, which we show can be restored by exposure of the cells to a peptide epitope. This phenotype suggests a defect in the association of intracellular antigen with class I molecules similar to that described for the murine mutant RMA-S (ref. 5), but in the present case the genetic defect can be mapped within the MHC locus on human chromosome 6.  相似文献   

17.
The chicken B locus is a minimal essential major histocompatibility complex.   总被引:52,自引:0,他引:52  
J Kaufman  S Milne  T W G?bel  B A Walker  J P Jacob  C Auffray  R Zoorob  S Beck 《Nature》1999,401(6756):923-925
Here we report the sequence of the region that determines rapid allograft rejection in chickens, the chicken major histocompatibility complex (MHC). This 92-kilobase region of the B locus contains only 19 genes, making the chicken MHC roughly 20-fold smaller than the human MHC. Virtually all the genes have counterparts in the human MHC, defining a minimal essential set of MHC genes conserved over 200 million years of divergence between birds and mammals. They are organized differently, with the class III region genes located outside the class II and class I region genes. The absence of proteasome genes is unexpected and might explain unusual peptide-binding specificities of chicken class I molecules. The presence of putative natural killer receptor gene(s) is unprecedented and might explain the importance of the B locus in the response to the herpes virus responsible for Marek's diseases. The small size and simplicity of the chicken MHC allows co-evolution of genes as haplotypes over considerable periods of time, and makes it possible to study the striking MHC-determined pathogen-specific disease resistance at the molecular level.  相似文献   

18.
Major histocompatibility complex (MHC) class I molecules bind and deliver peptides derived from endogenously synthesized proteins to the cell surface for survey by cytotoxic T lymphocytes. It is believed that endogenous antigens are generally degraded in the cytosol, the resulting peptides being translocated into the endoplasmic reticulum where they bind to MHC class I molecules. Transporters containing an ATP-binding cassette encoded by the MHC class II region seem to be responsible for this transport. Genes coding for two subunits of the '20S' proteasome (a multicatalytic proteinase) have been found in the vicinity of the two transporter genes in the MHC class II region, indicating that the proteasome could be the unknown proteolytic entity in the cytosol involved in the generation of MHC class I-binding peptides. By introducing rat genes encoding the MHC-linked transporters into a human cell line lacking both transporter and proteasome subunit genes, we show here that the MHC-encoded proteasome subunit are not essential for stable MHC class I surface expression, or for processing and presentation of antigenic peptides from influenza virus and an intracellular protein.  相似文献   

19.
Self versus non-self discrimination is a central theme in biology from plants to vertebrates, and is particularly relevant for lymphocytes that express receptors capable of recognizing self-tissues and foreign invaders. Comprising the third largest lymphocyte population, natural killer (NK) cells recognize and kill cellular targets and produce pro-inflammatory cytokines. These potentially self-destructive effector functions can be controlled by inhibitory receptors for the polymorphic major histocompatibility complex (MHC) class I molecules that are ubiquitously expressed on target cells. However, inhibitory receptors are not uniformly expressed on NK cells, and are germline-encoded by a set of polymorphic genes that segregate independently from MHC genes. Therefore, how NK-cell self-tolerance arises in vivo is poorly understood. Here we demonstrate that NK cells acquire functional competence through 'licensing' by self-MHC molecules. Licensing involves a positive role for MHC-specific inhibitory receptors and requires the cytoplasmic inhibitory motif originally identified in effector responses. This process results in two types of self-tolerant NK cells--licensed or unlicensed--and may provide new insights for exploiting NK cells in immunotherapy. This self-tolerance mechanism may be more broadly applicable within the vertebrate immune system because related germline-encoded inhibitory receptors are widely expressed on other immune cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号