首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过对圈与轮构成联图的第一类弱全染色研究来进一步验证第一类弱全染色猜想,应用构造具体染色的方法给出了圈与轮构成联图的第一类弱全色数。  相似文献   

2.
目的通过对圈与星、圈与扇、圈与轮构成冠图的第一类弱全染色研究来进一步验证第一类弱全染色猜想。方法应用构造具体染色的方法给出了圈与星、圈与扇、圈与轮构成冠图的第一类弱全色数。结果与结论得到圈与星、圈与扇、圈与轮构成冠图的第一类弱全色数。  相似文献   

3.
根据点可区别全染色的概念及其染色方法,讨论了路与轮联图的点可区别全染色,给出了路与轮联图的点可区别全色数的结论及其证明,为进一步探讨其他联图的点可区别全染色提供了理论证据,丰富了图的点可区别全染色的结果.  相似文献   

4.
一个全染色满足||Ti|-|Tj||≤1时称为均匀的,其中|Ti|为染第i种颜色的元素数,所需最少染色数称为均匀全色数,记为χet(G)。文中得到了Sm∨Sn的均匀全色数。  相似文献   

5.
根据点可区别全染色的概念及其染色方法,讨论了路与轮联图的点可区别全染色,给出了路与轮联图的点可区别全色数的结论及其证明,为进一步探讨其他联图的点可区别全染色提供了理论证据,丰富了图的点可区别全染色的结果.  相似文献   

6.
对一个简单图G的一个正常全染色,来说,G的点v的色集合C(v)是与v关联的边的颜色以及点v的颜色所构成的集合.对此f,如果G的任意两个相邻顶点的色集合不同,则称,为G的邻点可区别全染色.对G进行邻点可区别全染色所需要的最少颜色数称为G的邻点可区别全色数.对图rK2∨K8的邻点可区别全色数进行了讨论.  相似文献   

7.
对一个简单图G的一个正常全染色f来说,G的点v的色集合C(V)是与v关联的边的颜色以及点v的颜色所构成的集合.对此f,如果G的任意两个相邻顶点的色集合不同,则称f为G的邻点可区别全染色.对G进行邻点可区别全染色所需要的最少颜色数称为G的邻点可区别全色数.对图rK2∨K8的邻点可区别全色数进行了讨论.  相似文献   

8.
对一个正常的全染色满足各种颜色所染元素数(点或边)相差不超过1时,称为均匀全染色,其所用最少染色数称为均匀全色数.就扇与轮的联图Fm ∨ Wn,得到了在m,n不同取值情况下的均匀全色数.  相似文献   

9.
设G是简单图,f 是从V(G)∪E(G) 到{1,2,…,k}的一个映射.对每个u∈V(G),令C(u)={f(u)}∪{f(uv)|v∈V(G),uv∈E(G)}.如果f是k-正常全染色,且对任意u,v∈V(G),有C(u)≠C(v),那么称f为图G的点可区别全染色(简称为k-VDTC).数χv t(G)=min{k|G有k-VDTC}称为图G的点可区别全色数.给出m阶路Pm和n 1阶星Sn的联图的点可区别全色数.  相似文献   

10.
对于圈和轮的联图,给出了一种点可区别的全染色方法,并得到了其点可区别的全色数.  相似文献   

11.
对简单图G(V,E),f是从V(G)∪E(G)到{1,2,…,k}的映射,k是自然数,若f满足:(1)uv∈E(G),u≠v,f(u)≠f(v);(2)uv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),C(u)≠C(v);其中C(u)={f(u)}∪{f(uv)uv∈E(G)}.则称f是G的一个关联邻点可区别全染色,所需的最少颜色数称为图G的关联邻点可区别全色数.给出了路、圈、星、扇、轮倍图的关联邻点可区别全色数.  相似文献   

12.
对扇,轮,完全二部图作了简单的剖分,得到了它们的剖分图,并得到了其剖分图的邻点可区别全色数.  相似文献   

13.
证明了,任意正整数k≥2,存在点可区别边色数为2k+1的k+1-正则图;任意正整数m≥4,存在点可区别边色数为m的偶图.  相似文献   

14.
研究一些倍图的邻点可区别均匀全染色(AVDETC), 利用构造法和匹配法给出了偶阶完全图、 偶阶圈、 路、 星和轮的倍图的邻点可区别均匀全色数, 并验证了它们满足邻点可区别均匀全染色猜想(AVDETCC).  相似文献   

15.
根据路的幂图Pkn的结构性质,用穷染、递推的方法,讨论了Pkn的邻点可区别全染色和邻点可区别-VE全染色,得到了相应的色数,并给出了一种染色方案.  相似文献   

16.
王银春  郝建修 《河南科学》2006,24(4):477-479
图的邻点可区别全染色,相对于图的正常全染色有更强的要求,因为它要求相邻顶点具有不同的颜色集合.本文刻画了两类特殊的完全多部图、广义圈和广义Mycielski图的邻点可区别全色数.  相似文献   

17.
几类冠图的邻强边色数   总被引:7,自引:0,他引:7  
图的强染色来自计算机科学,有着很强的实际背景,但确定图的强色数是非常困难的。张忠辅,刘林忠,王建方等研究了图的邻强边染色,并提出了邻强边染色猜想:对任意连通图GG,{y}≥3且G≠C5有△≤X’ax(G)≤△+2。研究了树、圈、扇、轮、完全二部图及完全图的冠图的邻强边色数;证明了:△≤X’as(G)≤△+1,且X’as(G)≤△+1当且仅当G[V△]≠Ф。  相似文献   

18.
对图G的正常边染色,若满足不同点的点所关联边色集合不同,则称此染色法为点可区别的边染色法,其所用最少染色数称为该图的点可区域边色数。本文得到了路与星的联图的点可区别边色数。  相似文献   

19.
图的相邻强边着色数   总被引:1,自引:2,他引:1  
如果在一个图的正常边着色中,相邻两点关联的边集所着的颜色集合不同,则称此正常边着色为相邻强边着色.对图G进行相邻强边着色所需要的最小色数称为G的相邻强边着色数,记作X'as(G).给出了相邻强边着色数的两个上界:一是对于任何d-正则图G(d≥3),X'as(G)≤16d;二是如果图G有两个边不交的完美匹配,则X'aa(G)≤3△(G) 1.  相似文献   

20.
给出了圈的阶数至少为4的单圈图的邻点可区别全色数.如果E(G[VΔ])=,则χat(G)=Δ(G) 1,否则,χat(G)=Δ(G) 2,其中Δ(G)表示图G的最大度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号