首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
提出了一种新的基于深度置信网络的交通流预测方法,利用深度置信网络良好的训练和预测性能,能够很好地学习时序数据集的内部特征,从而准确地预测交通数据流.为了验证算法的有效性,在PeMS数据集上对算法进行了实验测试,并同其他相关预测和分析方法进行了比较,实验结果表明新算法具有较好的预测性能.  相似文献   

2.
针对车载电源故障机理复杂且知识经验不足,传统浅层神经网络诊断效果难能满意的问题,研究了基于深度置信网络的车载电源故障诊断方法.该方法借助于30 kW车载电源仿真系统采集的几种常见故障数据,通过对深度置信网络进行预训练与反向微调,构建了车载电源相应故障的深度诊断神经网络,从而实现了车载电源几类常见故障的有效智能诊断.该方法的优势在于能够将车载电源的故障特征提取与故障诊断有机融合,摆脱了传统浅层故障诊断方法对大量信号处理技术与诊断经验的依赖,仿真试验也进一步昭示出文中方法在车载电源故障诊断中的有效性和适宜性.  相似文献   

3.
4.
为了应对海量的字符(手写)识别,提出了一种将统一计算设备架构(Compute Unified Device Architecture,CUDA)和深度置信网络相结合的方法进行手写字符识别。该方法结合受限玻尔兹曼机和反向传播神经网络形成深度置信网络对字符图片数据进行识别,并且使用CUDA在图形处理器(GPU)上进行并行计算来完成识别过程。实验结果表明,使用该方法后,在不降低识别精度的情况下手写字符识别的速度大幅提升。  相似文献   

5.
机械设备服役过程中,工作环境和运转状态的动态变化直接影响设备故障诊断正确率,导致时间成本和经济效益的损失.优化深度置信网络结构,结合固定学习步长的信号分解技术,保留传感器数据原始特征,逐层反复提取信号的深层关键信息,并集成数据丢失技术优化网络结构,可以规避过拟合问题.进一步,结合迁移学习中的领域自适应方法,固化不同层级深度置信网络的记忆特征,形成考虑平移不变特征的自适应深度置信网络,识别变工况下同类故障信号特征信息,提升轴承智能故障诊断的准确性和泛化性.基于滚动轴承公开数据集,不同工况下该方法平均正确率高达95.65%,与其他5种方法相比较,证实了本文方法的有效性与准确性.  相似文献   

6.
针对油田现场强背景噪声干扰下,难以实现齿轮箱故障精确诊断的问题,提出基于深度置信网络(Deep Belief Network,DBN)的齿轮箱智能诊断方法。首先运用变分模态分解(Variational Mode Decomposition,VMD)对齿轮箱振动信号分别进行分解;然后依据互相关准则对小于阈值的模态运用最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)进行降噪滤波处理,并对降噪后的信号进行重构;最后构造故障特征集,实现基于DBN的故障特征自适应挖掘与故障模式智能识别。对现场的齿轮箱故障诊断表明,本文提出的方法具有自适应性,能显著提高故障分类准确率,为保障油田设备安全可靠运行提供了依据。  相似文献   

7.
针对糖尿病数据特征维度较高,单一分类器过度拟合导致性能受限,不能较好对糖尿病进行分类识别这一问题,提出了一种深度置信网(Deep Belief Networks,DBN)融合梯度提升决策树(Gradient Boosting Decision Tree,GBDT)的糖尿病检测算法(DBN-GBDT).该算法利用DBN对海量数据的特征提取和拟合复杂模型的能力,GBDT算法具有很强的泛化能力,将DBN用于特征提取和特征降维,GBDT方法用于分类.将提出的算法用于糖尿病数据分类识别,并与DBN、GBDT、SVM和随机森林四种经典方法进行对比.实验结果表明,该算法分类精度较高,稳定性更强,为糖尿病检测提供了新的方法.  相似文献   

8.
在对文本分类领域发展现状进行研究的基础上,提出了一种面向文本分类的深度置信网络特征提取方法,通过引入词向量模型和深度置信网络解决传统文本分类方法在文本表示及特征提取方面存在的语义缺失问题,实验结果表明,该方法在文本分类中有更高的准确率。  相似文献   

9.
针对伪造的手指静脉图像能够成功攻击手指静脉识别系统,从而使得其识别系统安全性能大大降低的问题,提出了一种基于深度置信网络的手指静脉防伪检测的方法;通过逐层无监督的学习方法预训练深度网络的权值参数,以及有监督的BP神经网络微调深度网络的权值参数,从而提取到手指静脉图像的特征,用于静脉图像的检测;实验结果证明所提出的手指静脉防伪检测方法能够有效地识别出假手指静脉图像;通过对比性实验研究,发现此方法提高了手指静脉识别系统的安全性能。  相似文献   

10.
对超宽带信道环境进行分类、识别,对于实现特定场景分析以及无线网络的优化具有重要意义。针对这一背景提出了一种基于深度置信网络(deep belief network,DBN)的信道环境分类方法,对不同的信道场景特征进行提取、分类。实验结果表明:提出的算法能有效地实现信道环境的分类识别。  相似文献   

11.
针对目前现有的强度预测方法精度低,提出提取输入参数的深层连接的深度信念网络(DBN)强度预测模型,并采用量子粒子群优化算法(quantum particle swarm optimization,QPSO)来确定DBN的隐含层节点个数和学习率。为获得最优的预测性能,以充填材料的成分及其尺寸作为基于DBN的预测模型的输入,输出充填材料的抗压强度。实验结果显示,该预测方法仅用了1.89 s的预测时间且精度达到99.84%,相比于广泛应用的BP神经网络、RVM(relevance vector machine)、SVM(support vector machine)三种算法在精度和时间上都有显著提升。  相似文献   

12.
为降低炼焦能耗,提高焦炭产量和质量,准确建立生产目标模型,提出基于深度信念网络模型的多目标优化研究方案。根据现场专家经验及生产现状确定能耗和产量为生产目标,对采集的炼焦数据进行处理和相关性分析,分别建立能耗和产量的深度信念网络模型及质量径向基神经网络模型,并且采用差分扰动的粒子群多目标优化算法进行集气管压力设定值优化,通过仿真研究验证了该方案的可行性。实验表明,该方案能准确地挖掘数据间的复杂特性,建立精准的目标模型,并得出最佳的集气管压力设定值,使炼焦能耗降低并且产量提高,可以为实际生产提供理论指导。  相似文献   

13.
针对云环境下虚拟机资源在多数时间中处于闲置状态导致云资源利用率低的问题,设计一种云资源监控系统,并在云监控基础上提出一种基于自回归积分滑动平均(ARIMA)模型的动态负载预测与资源配置的方法.该方法利用虚拟机负载与配置的关系,通过预测负载情况,提前启动或者挂起虚拟机,提高云资源的利用率.研究结合OpenStack云环境提供的虚拟机,实现其下的云资源监控,预测和弹性分配功能.结果表明:该系统能准确预测虚拟机的需求量,所制定的资源弹性分配策略能够提高云资源的利用率,进一步节约成本.  相似文献   

14.
设计了一种基于云计算技术的流媒体服务平台体系结构,针对此服务平台提出了一种面向云计算资源的自适应负载均衡方法,以提高平台的资源利用率以及减少服务拒绝率.测试结果表明:此方法适用于流媒体云服务平台的负载均衡调度.  相似文献   

15.
为了避免容器云资源因资源供求不均衡而导致的资源利用率差等问题,需要对未来时刻的资源需求情况进行预测来进行更精准的调度和分配资源,因此,结合神经网络的高效学习能力与自适应调整的学习率,提出一种基于自适应神经网络的云资源预测模型.首先,融合卷积神经网络(convolutional neural network,CNN)和长...  相似文献   

16.
通过收集、整理、分析云环境下用户操作文档行为的记录,建立用户操作文档行为模型,使用贝叶斯网络结构学习算法推理计算出文档操作的潜在风险系数。实验结果表明,贝叶斯网络能够有效地预测用户操作文档的风险,为云环境中文档的安全提供了一种预警机制,提高了文档的安全性。  相似文献   

17.
高效路由机制的设计可提高移动传感网的运行效率。提出了基于深度信任网络的移动传感网高效分簇路由机制。设计了传感器节点联系信息特征提取方法,从复杂的节点联系信息中挖掘核心特征,并依据挖掘的特征进行移动传感器节点的分簇。进而,综合考虑感知节点联系紧密度与能量状态,设计了高效的分簇路由机制,动态选取簇头节点进行簇内与簇间消息的路由。仿真验证表明,所提方法可分别提高平均投递率、平均投递时延、网络寿命性能14%、24%、23%以上。  相似文献   

18.
针对传统肺癌计算机辅助诊断系统中肺结节检出过程烦琐,且存在假阳性高的问题,提出一种基于多视角深度信念网络的肺结节识别方法。该方法首先将肺结节进行三维重建并将重建后不同大小的肺结节归一到不同尺度的立方体中,然后将不同视角的2.5D切片作为深度信念网络的输入数据,最后通过不同的融合策略完成对肺结节的识别。在肺部图像数据库联盟(LIDC)数据集上大量实验表明:相比于传统肺癌识别系统本文方法敏感性为(92.8±0.25)%,平均每组病例假阳性个数为2.4±0.3,该方法能有效降低肺结节自动检测过程中的假阳性率。  相似文献   

19.
Load balancing in the cloud computing environment has an important impact on the performance. Good load balancing makes cloud computing more efficient and improves user satisfaction. This article introduces a better load balance model for the public cloud based on the cloud partitioning concept with a switch mechanism to choose different strategies for different situations. The algorithm applies the game theory to the load balancing strategy to improve the efficiency in the public cloud environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号