首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
研究了非线性项中含有时滞导数项的高阶常微分方程u~((n))(t)+a(t)u(t)=f(t,u(t-τ_0(t)),u′(t-τ_1(t)),…,u~((n-1))(t-τ_(n-1)(t))),t∈R正ω-周期解的存在性,其中n≥2,a:R→(0,∞)连续以ω为周期,f:R×[0,∞)×R~(n-1)→[0,∞)连续,关于t以ω为周期,τ_k:R→[0,∞)连续以ω为周期,k=0,1,…,n-1。运用正算子扰动方法和锥上的不动点指数理论,获得了该方程正ω-周期解的存在性结果。  相似文献   

2.
利用上下解的单调迭代方法,考虑n阶多时滞微分方程u(n)(t)+a(t)u(t)=f(t,u(t-τ_1),u(t-τ_2),…,u(t-τ——k)),t∈Rω-周期解的存在性,通过建立新的极大值原理,构造方程ω-周期解的单调迭代求解程序,得到了该方程ω-周期解的存在性与唯一性结果.其中:n≥2;a:R→(0,∞)连续,以ω为周期;f:R×Rk→R连续,关于t以ω为周期;τ1,τ2,…,τk≥0为常数.  相似文献   

3.
研究了高阶中立型时滞微分方程dn'dtn(u(t)-cu(t-δ))+M(u(t)-cu(t-δ))=f(t,u(t),u′(t-τ(t)),…,u(n-1)(t-τ(t)))正ω-周期解的存在性.通过构造一个特殊的锥,运用锥上的不动点指数理论,获得了该问题正周期解存在性的结果.  相似文献   

4.
利用上下解的单调迭代方法,考虑二阶多时滞微分方程-u″(t)=f(t,u(t),u(t-τ_1),u(t-τ_2),…,u(t-τ_n)),t∈Rω-周期解的存在性,其中:f:R×R~(n+1)→R连续,关于t以ω为周期;τ_1,τ_2,…,τ_n为正常数.通过建立新的极大值原理,构造方程ω-周期解的单调迭代求解程序,证明了ω-周期解的存在性与唯一性.  相似文献   

5.
讨论有序Banach空间E中二阶时滞微分方程-u″(t)+a(t)u(t)=f(t,u(t-τ_1),…,u(t-τ_n)),t∈R正ω-周期解的存在性,其中a是定义在实数空间R上正的连续的ω-周期函数,f:R×E~n→E连续,且关于t以ω为周期,τ_1,τ_2,…,τ_n0为常数.在较一般的非紧性测度条件与序条件下用凝聚映射的不动点指数理论获得了该问题正周期解的存在性结果.  相似文献   

6.
研究了有序Banach空间E中二阶多时滞微分方程-u″(t)+a(t)u(t)=f(t,u(t-τ_1),…,u(t-τ_n)),t∈R,正ω-周期解的存在性,其中:a∈C(R)是正的ω-周期函数;f:R×Kn→K连续且f(t,v)关于t为ω-周期函数;v=(ν_1,ν_2,…,νn)∈K~n;K为正元锥;τ_i≥0,i=1,2,…n为常数.在较一般的非紧性测度条件与有序条件下,应用凝聚映射的不动点指数理论,获得了该问题正ω-周期解的存在性结果.  相似文献   

7.
利用上下解单调迭代方法, 考虑有序Banach空间E中三阶时滞微分方程u(t)+M0u(t-τ0)=f(t,u(t), u(t-τ1), u(t-τ2)),〓t∈R,2π-周期解的存在性, 其中 f: R×E3→E 连续, 关于 t 以 2π-为周期, τ012为正常数。 通过建立新的极大值原理和构造方程 2π-周期解的单调迭代求解程序, 得到了该方程 2π-周期解的存在性与唯一性结果。  相似文献   

8.
用上下解的单调迭代方法, 通过建立新的极大值原理, 构造n阶时滞微分方程-u(n)(t)=f(t,u(t),u(t-τ1),u(t-τ2),…,u(t-τn)),t∈R, ω-周期解的单调迭代求解程序, 并证明其ω 周期解的存在性和唯一性, 其中f: R×Rn+1→R连续且关于t以ω为周期, τ12,…,τn是正常数.  相似文献   

9.
本文研究了非线性二阶常微分方程周期边值问题{-u″+μ2 u=λg(t)f(u),0t2π,u(0)=u(2π),u′(0)=u′(2π)正解的存在性,其中μ0为常数,λ是一个正参数,g:[0,2π]→[0,∞),f:[0,α)→[0,∞)为连续函数,α0为常数.主要结果的证明基于锥拉伸与压缩不动点定理.  相似文献   

10.
考虑泛函微分方程u′(t)=a(t)u(t)-λb(t)f(u(t-τ(t)))正周期解的存在性,其中λ>0为参数,a∈C(R,[0,∞))为ω-周期的,且∫ω0a(t)dt>0;b,τ∈C(R,R)为ω-周期的.f∈C([0,∞),R)且f(0)>0.在函数b变号的情形下,本文运用Leray-Schauder不动点定理,建立了上述泛函微分方程正周期解的存在性结果.  相似文献   

11.
考虑一类非线性三阶差分方程Δ3u(t-3)+αΔ2u(t-2)+βΔu(t-1)=f(t,u(t)), t∈[3,T]Z正周期解的存在性和多解性, 其中 T>4, α>0, -1<β<0, f:[3,T]Z×[0,∞)→R关于 u∈[0,∞)连续, f(t+ω,u)=f(t,u), ω∈Z+。主要结果的证明基于Guo-Krasnoselskii 不动点定理。  相似文献   

12.
用一个单调函数ω(t) 为中介,利用Szasz-Durrmeyer算子导数的性质以及该算子的可换性和光滑模ωφλ(f,t)为特点,得到以下点态逼近逆定理对于f∈C[0,+∞),0≤λ≤1,φ(x)=x,δn(x)=φ(x)+1/n, 若|f(x)-Sn(f,x)|≤Mω(n-1/2δ1-λn(x)),其中ω(t)≥0, ω(ut)≤C(u2+1)ω(t),则对任意t>0,有ω2φλ(f,t)≤Ct2∑0<n≤t-1(n+1)ω(n-1)+Ct2‖f‖,ω1(f,t)≤Ct∑0<n≤t-1ω(n-(2-λ)/(2))+Ct‖f‖.此结果推广了有关ωφ(f,t)和ω(f,t)的结果.  相似文献   

13.
本文运用迭代法研究了带p-Laplacian算子的四阶Sturm-Liouville边值问题{(φp(u″(t)))″+q(t)f(t,u(t),u″(t))=0,t∈(0,1),αu(0)-βu′(0)=0,γu(1)+δu′(1)=0,u″(0)=0,u'(0)=0正解的存在性,其中φp(s)=|s|~(p-2)s,p1;f:[0,1]×[0,+∞)×R→[0,+∞)连续;q(t)0,t∈(0,1).  相似文献   

14.
运用锥上的不动点定理, 研究三阶时滞微分方程边值问题{u(t)+λa(t)f(t,u(t-τ))=0, t∈(0,1), τ>0,u(t)=0,-τ≤t≤0,u(0)=u″(0)=0,u(1)=αu(η)正解的存在性, 其中 λ 是参数, 且 0<η<1, 0<α<1/η, f:[0,1]×[0,∞]→[0,∞)连续。  相似文献   

15.
本文运用全局分歧定理研究了一阶泛函微分方程u'(t)-a(t)u(t)+λg(t)f(u(t-τ(t)))=0,t∈R正T-周期解的存在性,其中λ0是参数,a∈C(R,[0,∞)),g∈C(R,[0,∞))且a?0,g?0,τ∈C(R,R),a,g,τ都是T-周期函数,f∈C([0,∞),[0,∞)).本文构造了该方程正T-周期解的全局结构,获得了方程正T-周期解的存在性.  相似文献   

16.
文章讨论了Banach空间X中半线性时滞发展方程u′(t)+Au(t)=F(t,u(t),u(t-τ)),t∈Rω-周期解的存在性,其中-A为X中的C0-半群T(t)(t≥0)的无穷小生成元,F:R×X×X→X连续,关于t以ω为周期,τ0为常数。通过对解算子的周期延拓,利用相关的不动点定理,获得了时滞发展方程ω-周期mild解的存在性结果。最后,给出了一个例子来说明主要结果的应用。文章不再要求先验有界和非线性项Lipschitz连续,这极大地改进和推广了现有文献的相关结果。  相似文献   

17.
用Guo-Krasnoselskii不动点定理给出半正二阶离散周期边值问题{Δ2 u(t-1)+a(t)u(t)=λf(t,u(t)),t∈[1,T]?,u(0)=u(T),Δu(0)=Δu(T)正解的存在性和多解性结果,其中λ>0为参数,[1,T]?={1,2,…,T},f:[1,T]?×[0,∞)→?连续且存在常数...  相似文献   

18.
高阶微分边值问题在物理学、工程学有着广泛的应用.许多专家学者研究了高阶边值问题的正解存在性,并得出了很好的结果,尤其对带参数的四阶边值问题的研究更为深刻.主要运用锥拉伸压缩不动点理论,研究了带参数的四阶边值问题{u(4)(t)+βu″(t)-αu(t)=μf(t,u(t)),00.  相似文献   

19.
通过Mawhin重合度拓展定理和一些分析的技巧,我们研究得到了一类四阶带偏差变元p拉普拉斯算子方程[φp(u″(t))]″+f(t,u(t))+g(t,u(t-τ(t)))=e(t)周期解存在的充分性条件.  相似文献   

20.
用正算子扰动方法和锥上的不动点指数理论讨论具有非线性导数项的二阶常微分方程■正2π-周期解的存在性,其中:a:?→(0,+∞)连续,以2π为周期;f:?×[0,+∞)×?→[0,+∞)连续,f(t,x,y)关于t以2π为周期.在非线性项f(t,x,y)满足适当的不等式条件下,得到了该方程正2π-周期解的存在性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号