首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
Q&P钢配分过程中的组织演变   总被引:1,自引:0,他引:1  
利用扫描电镜、透射电镜、X射线衍射和电子探针等研究了0.2C--1.51Si--1.84Mn钢在配分阶段组织的演变情况.配分温度为400℃时,碳在10 s时就可以完成配分,得到残余奥氏体最大体积分数为13.4%.随着配分时间的增长,钢中马氏体发生回火现象,奥氏体发生分解,强度、延伸率降低.当配分时间达到1000 s时,屈服强度、延伸率突然升高.分析认为马氏体回火带来的塑性提高抵消了残余奥氏体量减少引起的塑性降低,并且由于渗碳体和碳化物的析出,变形时阻碍位错的运动,从而提高了屈服强度.通过电子探针分析说明配分阶段发生了碳的扩散,随着配分时间的增长,发生了渗碳体和碳化物的析出,降低了残余奥氏体中碳的含量.  相似文献   

2.
设计并研究了低碳硅锰系淬火分配(Q&P)钢的热处理工艺.利用SEM,TEM和XRD观察并分析了实验钢的微观结构和相组成.理论计算结果显示:Fe-021C二元合金的最佳淬火温度为290℃,最大残余奥氏体含量(摩尔分数)为179%.工艺模拟结果表明:实验钢残余奥氏体体积分数为67%~172%,残余奥氏体平均碳质量分数为102%~148%.残余奥氏体与相邻马氏体板条间晶体学位向符合K-S关系或N-W关系.实验所涉工艺中均存在新鲜马氏体的生成.随着配分时间的延长,残余奥氏体含量先增加后减少,残余奥氏体平均碳含量不断增加,最佳配分时间为50s.配分后期马氏体板条中出现的碳化物导致了残余奥氏体的减少.  相似文献   

3.
借助OM、SEM、XRD等手段,对比研究了一步、两步等温贝氏体转变工艺及QPB(淬火+配分+贝氏体转变)工艺对高碳贝氏体钢(w(C)=0.79%)显微组织与力学性能的影响。结果表明,采用一步等温贝氏体转变工艺处理试验钢时,当等温温度同为250℃,随着保温时间的延长,钢中贝氏体转变越充分,块状残余奥氏体尺寸降低,组织更为均匀细小;而在较低温度下(200℃)等温处理时,钢中残余奥氏体含量显著降低,贝氏体铁素体板条更细小,材料的强度和硬度提高,而塑性和韧性下降。两步等温贝氏体转变工艺处理(250℃×24 h+200℃×72 h)的试验钢中贝氏体铁素体板条平均尺寸约为82 nm,残余奥氏体体积分数为21.4%,获得了最佳的综合力学性能,抗拉强度达到2040 MPa,伸长率为12.5%,冲击韧性为21 J。QPB工艺提高了贝氏体转变速率,大大缩短了热处理时间,最终得到马氏体+贝氏体铁素体+残余奥氏体的组织,试验钢同时也获得了良好的强度和塑韧性。  相似文献   

4.
利用实验室MMS-200热模拟试验机对Fe-0.2C-7Mn-3Al钢的临界区奥氏体稳定化行为进行研究.通过SEM,EPMA,TEM和XRD等手段观察并分析了实验钢的微观组织演变以及C和Mn元素的配分过程.实验结果表明,不同的临界区退火温度下,实验钢中均存在25%~30%左右的粗大压扁状δ铁素体.随着退火温度的升高,微观组织中残余奥氏体的含量先增加后减小,体积分数为10.2%~32.5%,残余奥氏体与临界区铁素体呈板条状相间分布,板条宽度约200~300 nm.最佳的临界区退火温度为750℃.C,Mn,Al元素的协同作用促进了临界区奥氏体的稳定化,使得实验钢能够在较短的时间内完成有效的配分.  相似文献   

5.
研究了0.21C--1.43Si--1.35Mn钢在两相区及完全奥氏体区采用QP(Quenching and Partitioning)工艺加热后的微观组织与力学性能.结果表明:两相区加热可获得马氏体、残余奥氏体和铁素体组织,钢的抗拉强度为1 013 MPa,延伸率为25%,强塑积为25 655 MPa.%;完全奥氏体区加热可获得马氏体和残余奥氏体组织,钢的抗拉强度为1 257 MPa,延伸率为17%,强塑积为21 454 MPa.%;QP钢中的马氏体主要为板条状,伴有大量位错,并且发现有少量孪晶马氏体,分析认为由配分过程后的淬火过程转变而来;通过QP工艺可得到体积分数高达10.67%的残余奥氏体,分布在板条马氏体间,呈薄膜状.  相似文献   

6.
本文研究了不同回火工艺条件下热轧态U25CrNi高强贝氏体钢轨的组织与力学性能变化。结果表明,试验钢热轧态和回火组织均由贝氏体、马氏体和残余奥氏体构成。当回火条件为300℃×200min时,试验钢中部分残余奥氏体发生贝氏体相变,钢的各项力学性能变化不大;当回火温度升至400℃时,试验钢中残余奥氏体体积分数较大,碳化物析出量较少,内应力进一步释放,试验钢的延伸率和冲击吸收功达到最大值,同温度下延长回火时间至360min,钢中碳化物颗粒析出增多,延伸率和冲击性能明显降低;当回火温度为500℃时,试验钢中贝氏体铁素体明显粗化,并伴随大量碳化物颗粒析出,残余奥氏体大量分解,出现了回火脆性。综合考虑,U25CrNi热轧高强贝氏体钢轨的最佳回火工艺为400℃×200min。  相似文献   

7.
在基本C-Si-Mn系TRIP钢的基础上,通过调整工艺参数获得具有马氏体基的TRIP钢,通过扫描电镜分析、透射电镜分析、电子背散射衍射分析、X射线衍射分析、单向拉伸实验等对经不同工艺处理的实验用钢的显微组织和力学性能进行了对比分析.结果表明:两相区退火温度升高,铁素体比例减少,贝氏体比例增加,残余奥氏体整体先增加后减少;在较低温度下退火时,条状铁素体合并成为块状铁素体;在较高温度下退火时,条状奥氏体合并成为块状奥氏体,随后在冷却过程中转变为马氏体或残余奥氏体;实验钢在780℃退火时,获得最佳综合力学性能,此时抗拉强度达1053MPa,延伸率达23%,强塑积达24GPa×%.一定量的细小弥散的板条残余奥氏体是实验钢获得高强塑积的主要原因.  相似文献   

8.
以低碳Si-Mn钢为研究对象,在传统淬火-配分工艺中引入压缩变形,研究了压缩变形对组织演变的影响以及实验钢在不同等温配分条件下的显微结构特征.结果表明,引入高温变形处理后,试样具有更加精细的显微结构,同时显微组织中含有较高比例的大角度晶界,由无变形条件下的65.7%提高至72.5%;在相变及碳配分过程中,晶界以及板条边界附近易形成碳富集区;随配分时间延长,显微组织呈回火转变趋势,当配分时间延长至1 500 s时,组织中出现较大量的碳化物析出相,残余奥氏体体积分数降低至7.9%.  相似文献   

9.
研究了C--Mn--Mo--Cu--Nb--Ti--B系低碳微合金钢915℃淬火和490~640℃回火的调质工艺对钢的组织及力学性能的影响.用扫描电镜和透射电镜对实验钢的组织、析出物形态和分布以及断口形貌进行观察,采用X射线衍射仪分析钢中残余奥氏体的体积分数.结果表明:调质后,实验钢获得贝氏体、少量马氏体及残余奥氏体复相组织,贝氏体板条宽度只有250 nm,残余奥氏体的体积分数随着回火温度的升高而降低,经淬火与520℃回火后残余奥氏体的体积分数为2.1%.调质后析出物的数量激增,6~15 nm的析出物占70%以上.实验钢经过915℃淬火与520℃回火后,其屈服强度达到915 MPa,抗拉强度990 MPa,-40℃冲击功为95 J.细小的析出物及窄的板条提高了钢的强度.板条间有残余奥氏体存在,改善了实验钢的韧性.  相似文献   

10.
为了研究热轧Fe-6Mn-3Al TRIP钢组织演变和力学性能,对实验钢采用淬火+不同时间退火(ART)的热处理工艺.研究发现,随着退火时间的增加,奥氏体晶粒尺寸增大、稳定性降低,冷却过程中部分奥氏体相变为马氏体;其中退火10 min后,实验钢性能最优,其残余奥氏体体积分数能达到50.3%,抗拉强度765 M Pa,总延伸率达到49.1%;拉断后实验钢中的奥氏体含量减少,马氏体含量增加,其中,退火10 min后的实验钢TRIP效应最为明显,奥氏体体积分数由变形前的50.3%降低到变形后的11%,奥氏体转化率为78%.  相似文献   

11.
采用γ单相区和γ+α双相区轧制并淬火工艺以及双相区再加热-淬火-碳配分( IQ&P)工艺,研究预处理组织对低碳钢室温状态多相组织特征及力学性能的影响规律. 实验用低碳钢经两种工艺轧制并淬火处理,获得马氏体和马氏体+铁素体的预处理组织,再经双相区IQ&P工艺处理后均获得多相组织. 马氏体预处理钢的室温组织由板条状亚温铁素体、块状回火马氏体以及一定比例的针状未回火马氏体和8. 2%的针状残余奥氏体组成;马氏体+铁素体预处理钢由板条状亚温铁素体、块状和针状未回火马氏体以及14. 3%的短针状或块状残余奥氏体组成. 在相同的双相区IQ&P工艺参数下,预处理组织为马氏体的钢抗拉强度为770 MPa,伸长率为28%,其强塑积为21560 MPa·%;而预处理组织为马氏体+铁素体的钢抗拉强度为834 MPa,伸长率增大到36. 2%,强塑积达到30190 MPa·%,获得强度与塑性的优良结合.  相似文献   

12.
采用力学性能测试、组织观察等方法研究临界退火和不同温度回火对海洋工程用钢显微组织和力学性能的影响.结果表明,实验钢经两相区退火和不同温度回火后,获得了回火马氏体及不同体积分数(0~6%)的残余奥氏体.随实验钢中残余奥氏体体积分数的增加,屈服强度从753MPa降低到506MPa,抗拉强度介于794~843MPa,屈强比从0.9降低到0.6,延伸率从31.3%提高到36.2%.实验钢中残余奥氏体能够提高冲击塑性变形能力并阻碍裂纹扩展,在-80℃冲击功达到236J,然而热稳定性差的残余奥氏体在低温下优先转变成马氏体并降低了低温韧性,冲击功下降到136J.  相似文献   

13.
Carbon, manganese, and silicon distribution in quenching and partitioning (Q&P) steel during partitioning process was investigated to reveal the diffusion behavior. The microstructure and chemical composition were analyzed by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and three-dimensional atom probe. It is shown that the studied Q&P steel consisted of martensite laths and thin, film-like retained austenite showing extraordinary phase transformation stability. Carbon atoms mostly diffused to the retained austenite from martensite at a higher partitioning temperature. In the experimental steel partitioned at 400℃ for 10-60 s, carbides or cementite formed through carbon segregation along martensite boundaries or within the martensite matrix. As a result of carbon atom diffusion from martensite to austenite, the carbon content in martensite could be ignored. When the partitioning process completed, the constrained carbon equilibrium (CCE) could be simplified. Results calculated by the simplified CCE model were similar to those of CCE, and the difference between the two optimum quenching temperatures, where the maximum volume fraction of the retained austenite can be obtained by the Q&P process, was little.  相似文献   

14.
A more accurate estimation of stress-strain relationships for martensite and ferrite was developed, and the modified law of mixture was used to investigate the stress-strain partitioning of constituent phases in dual phase (DP) steels with two different martensite volume fractions. The results show that there exist great differences in the stress-strain contribution of martensite and ferrite to DP steel. The stress-strain partitioning coefficient is not constant in the whole strain range, but decreases with increasing the true strain of DP steel. The softening effect caused by the dilution of carbon concentration in martensite with the increase of martensite volume fraction has great influence on the strain contribution of martensite. The strain ratio of ferrite to martensite almost linearly increases with increasing the true strain of DP steel when the martensite volume fraction is 22%, because martensite always keeps elastic. But the strain ratio of ferrite to martensite varies indistinctively with the further increase in true strain of DP steel above 0.034 when the martensite volume fraction is 50%, because plastic deformation happens in martensite. The stress ratio ofmartensite to ferrite decreases monotonously with increasing the true strain of DP steel whether the martensite volume fraction is 22% or 50%.  相似文献   

15.
The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-1.8Mn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a traditional TRIP steel containing as-cold-rolled ferrite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRIP-aided steel with martensite as the original microstructure, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, resulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening behavior is also discussed for both types of steel.  相似文献   

16.
In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号