首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
连续型隐马尔可夫模型(HMM)参数与语音识别   总被引:1,自引:0,他引:1  
提出了一种新的连续型隐马尔可夫模型(HMM)的概率密度函数,并导出了一系列的参数寻优迭代公式,与常用的概率密度函数相比,它的运算量较小,且不易产生计算时的上溢与溢问题,把它用于HMM语音识别,效果较好。  相似文献   

2.
本文针对线性模型在语音识别中的不足,进行了隐马尔可夫模型(HMM)在语音单字识别中的研究,主要对观察输出概率求解、最佳状态序列寻找、参数估计和模型参数的选择进行了探讨.  相似文献   

3.
语音识别中隐马尔可夫模型状态数的研究   总被引:2,自引:0,他引:2  
该文从信息论的观点出发,对语音信号的隐马尔可夫模型(HMM)的状态数进行研究,建立了HMM的状态数研究的简化模型,指出HMM的信息熵是由语音信号的固有熵和附加熵组成。随状态数增加,信息熵趋向固有熵。最后,在综合考虑信息熵和运算量两方面因素情况下,得出了状态数宜在6 ̄8之间的结论。  相似文献   

4.
提出了一种基于隐马尔可夫模型(HMM)的人脸图像识别方法.对归一化的人脸图像,该方法 2D-DCT变换域提取人脸图像的一维特征矢量.通过对HMM的训练和识别实验表明,文中提出的方法计算量少,运行速度较快,是一种比较适合工程应用的人脸识别算法.  相似文献   

5.
传统的隐马尔可夫模型的缺点在于不能很好地描述语音信号的动态特性。某些改进算法状态持续时间进行修正,但是也削弱了对实时信号长度变化的适应性。作者在传统的隐马尔夫模型的基础上,通过在引入状态持续时间时,将其归一化。并观察序列长度对它的影响,使之能较好地描述语音信号的动态特性,同时也能较好地自适应描述实时语音信号的长度变化。  相似文献   

6.
一种改进的隐马尔可夫模型训练算法   总被引:2,自引:0,他引:2  
将类关联特征(class-dependent feature,CDF)用于隐马尔可夫模型(hidden Markov model,HMM)的建模,提出了一种新的HMM训练算法,与传统的HMM训练算法在理论上完全一致,但新算法避免了直接估计高维的状态输出概率密度函数(probability density function,PDF),可提高模型参数的估计精度.  相似文献   

7.
基于改进的隐马尔科夫模型的语音识别方法   总被引:1,自引:0,他引:1  
针对隐马尔可夫(HMM)语音识别模型状态输出独立同分布等与语音实际特性不够协调的假设以及在使用段长信息时存在的缺陷,对隐马尔可夫模型进行改进,提出马尔可夫族模型。马尔可夫族模型可看作一个数学上由多个马尔可夫链构成的多重随机过程,HMM模型则是双重随机过程,因而,HMM模型可视为马尔可夫族模型的特例。马尔可夫族模型用条件独立性假设取代了HMM模型的独立性假设。相对条件独立性假设,独立性假设是过强假设,因而,基于马尔可夫族模型的语音模型更符合语音实际物理过程。在马尔可夫族语音识别模型中引入状态段长信息,能自动根据语速对语音单元段长进行调整。非特定人连续语音实验结果表明,利用状态段长信息的改进语音识别模型比经典HMM模型的性能明显提高。  相似文献   

8.
基于离散隐马尔可夫模型和奇异值特征的人脸检测   总被引:1,自引:0,他引:1  
该文提基于离散隐马尔可夫模型(HMM)和奇异值特征的人脸检测方法。这一算法包含2部分工作,首先提出了基于离散隐马尔可夫模型和奇异值特征的正向端正人脸检测方法,然后将该算法扩展到检测任意旋转角度的人脸。扩展算法首先计算当前位置子图像窗口的奇异值特征,将该特征向量经过识别各个旋转角度人脸的HMM模型,得到该子图像窗口的旋转角度,再经过旋正,重新送到识别正面端正人脸的HMM模型,由此确定该子图像窗口是否为人脸,对一个由43幅集体照片组成的正面人脸图像集进行测试,共检测到484人中的425人,检测率为87。8%;而多角度旋转人脸图像检测率为75.1%,实验结果表明,该方法具有良好的检测性能。  相似文献   

9.
将隐马尔可夫模型引入到舰船噪声目标识别中。选择MEL频率倒谱及其差值参数作为模型的观察序列,分别采用Baum-Welch算法和Viterbi算法对模型进行训练和识别。对这一模型进行了计算机模拟,并利用潜艇、鱼雷和水面舰3类目标的海上实录噪声对其识别性能进行了测试,正确识别率为87%。实验表明,用隐马尔可夫模型对舰船辐射噪声进行目标识别可以取得较好的效果。  相似文献   

10.
基于文本分块提出一种新的文本信息抽取技术,该技术利用文本的语义特征和结构特征,抽取具有特征的状态,以此结果为基础,进一步运用改进的隐马尔可夫模型,抽取剩余的无特征状态.对美国CMU大学CORA搜索引擎研制组提供的数据集中的100篇进行测试,结果显示精确度和召回率比基于单词和传统隐马尔可夫模型的方法都有所提高,并进一步提高了效率.  相似文献   

11.
基于段长分布的隐含Markov模型(DDBHMM)可解决经典隐含Markov模型(HMM)的状态段长指数分布的问题,实现了基于凸性假设的搜索。为解决非齐次模型的搜索算法问题,提出采用混合Gauss分布来拟合非凸段长分布,用子状态拆分的方法来实现非凸段长分布DDBHMM识别算法。在音乐信号识别上的实验表明:该方法在召回率提高1.1%的情况下,使准确率提高约10%。该方法实现了非凸段长分布HMM的识别算法,并且对于其他非凸段长信号具有推广价值。  相似文献   

12.
针对隐马尔可夫(HMM)词性标注模型状态输出独立同分布等与语言实际特性不够协调的假设,对隐马尔可夫模型进行改进,引入马尔可夫族模型。,该模型用条件独立性假设取代HMM模型的独立性假设。将马尔可夫族模型应用于词性标注,并结合句法分析进行词性标注。用改进的隐马尔可夫模型进行词性标注实验。实验结果表明:与条件独立性假设相比,独立性假设是过强假设,因而基于马尔可夫族模型的语言模型更符合语言等实际物理过程;在相同的测试条件下,马尔可夫族模型明显好于隐马尔可夫模型,词性标注准确率从94.642%提高到97.126%。  相似文献   

13.
状态输出概率密度为对角协方差矩阵高斯分布的隐马尔可夫模型(HMM-DG)在帧内特征相关建模方面存在缺陷.本文将因子分析方法与HMM-DG的混合高斯建模相结合,提出了一种具有弹性的帧内特征相关隐马尔可夫模型框架一基于因子分析的隐马尔可夫模型(HMM-FA).并导出了HMM-FA的训练算法.理论分析和仿真实验都表明:在训练数据相同的条件下,HMM-FA的性能优于HMM-DG。  相似文献   

14.
为了对恐怖事件实现早期预警,通过分析恐怖事件的网络结构,构建了恐怖事件的预测模型。利用隐马尔可夫模型与贝叶斯网络方法,通过分析一些先前发生的事件来预测恐怖分子在未来一段时间可能发动的恐怖活动,实现对相关情报的侦测,预防可能发生的恐怖事件。同时,对完备数据与不完备数据条件下的恐怖事件的预测算法进行分析。结果表明,提出的预测方法与使用监测软件得到的结果相近,验证了隐马尔可夫模型的合理性和贝叶斯网络方法的有效性。不足之处在于,监测过程获取的情报信息较少,一定程度上影响了模型结果的精确度。  相似文献   

15.
为了提高在噪声环境下语音识别系统的性能,对基于子带独立感知理论的语音识别方法进行了研究.这些方法利用人耳对不同频率信号感知的差异,以及噪声和识别对象的频域特征差异,分别采用线性分析、判决分析、多层感知机以及子带最大似然估计对噪声影响进行补偿.实验表明,子带分析采用非线性策略优于线性策略.基于独立感知假定的子带模型,虽然由于独立性假定丢失了带间相关性,但对于噪声环境下语音识别而言可以捕获噪声和识别对象的频谱差异,从而获得比全带分析更高的鲁棒性.  相似文献   

16.
隐Markov模型在剪接位点识别中的应用   总被引:6,自引:0,他引:6  
剪接位点的识别是基因识别中的一个重要环节。由于现有的基因识别算法主要关注编码区的整体特性 ,而并不着重考虑个别位点的信息 ,因此难以准确地识别出剪接位点。考虑到剪接位点附近的保守序列的相邻碱基之间应该存在某种相关性 ,利用一阶 Markov链建立了表述这种相关性的模型 ,在此基础之上 ,设计了专门用于剪接拉点识别的隐马氏模型 (HMM)方法。实验结果表明 ,用 HMM描述剪接位点附近序列符合实际情况 ,并且利用这一方法进行剪接位点的识别可以很好地提取位点附近保守序列在边缘分布与条件分布 (转移概率 )上的统计特征。使用该方法对真实剪接位点和虚假剪接位点进行识别 ,识别率均可达 90 %以上。  相似文献   

17.
基于混合隐Markov模型的红细胞计数方法   总被引:3,自引:0,他引:3  
为解决红细胞的计算机自动识别问题 ,引入了混合隐 Markov模型对彩色细胞纹理进行识别 ,采用螺旋型采样方法 ,应用一维隐 Markov模型解决二维图像处理问题。选择不同的样本 ,以期望最大算法训练多个混合隐 Markov模型 ,利用它对图像进行纹理识别 ,以距离变换和分水岭算法进行分割计数。该方法在分类正确率和算法适用性上取得了比较好的结果 ,提高了制片质量。该方法对中等质量的红细胞照片进行计数能够取得 94 %以上的识别正确率。提出了对混合 Markov模型初值选取问题的一种改进算法 ,以提高计算效率和算法鲁棒性  相似文献   

18.
基于隐Markov模型的汉语词类自动标注的实验研究   总被引:3,自引:0,他引:3  
汉语词类自动标注技术在中文信息处理现实应用中占据着十分重要的位置。论文在经过人工分词和词类标注的大规模汉语语料库的支持下 ,通过一系列对比实验 ,对基于隐 Markov模型的汉语词类自动标注算法进行了系统的考察 ,并得出结论 :1Bigram模型的“性能价格比”较 Tri-gram模型更令人满意 ;2以 7万词次左右的标注语料库训练 Bigram模型即已基本够用 (此时 ,兼类词词类标注正确率及文本词类标注正确率分别可达 93%和 97%以上 ) ;3Bi-gram模型对不同领域具有一定的适应性。这些结论对设计实用型汉语词类自动标注系统具有指导意义。  相似文献   

19.
基于广义隐马尔可夫模型的网页信息抽取方法   总被引:2,自引:0,他引:2  
针对网页所特有的基于版面结构的特点,利用基于视觉的网页分割算法VIPS对网页分块,得到一种新的状态转移序列,取代了传统的状态转移序列。通过二阶Markov链改进广义隐马尔可夫模型(GHMM)的状态转移和输出观测值假设条件,提出了二阶的广义隐马尔可夫模型。最后通过实验说明改进的GHMM对于网页信息抽取有很高的精确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号