首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
亚甲基兰的生物污泥吸附及胞外聚合物作用   总被引:1,自引:0,他引:1  
对比研究了活性污泥和厌氧污泥对染料亚甲基兰的吸附性能,并考察了胞外聚合物(EPS)以及外层溶解性胞外聚合物(SEPS)和内层固着性胞外聚合物(BEPS)在此过程中所起的作用.结果表明,活性污泥中的EPS,SEPS,BEPS以及厌氧污泥中的EPS,BEPS对染料哑甲基兰的吸附更符合Langmuir等温式,厌氧污泥中的SEPS则更符合Freundlich 模型.活性污泥和厌氧污泥中SEPS绝对吸附量均大于BEPS的绝对吸附量,分别为14.1倍和5.8倍.但由于单位质量活性污泥和厌氧污泥中BEPS的质量均远大于SEPS,故活性污泥和厌氧污泥EPS对染料亚甲基兰的吸附主要是BEPS的吸附所贡献.  相似文献   

2.
剩余活性污泥胞外聚合物对水中Cd2+和Zn2+的吸附效能   总被引:2,自引:0,他引:2  
以占剩余活性污泥质量80%的胞外聚合物(extracelluar polymeric substances,EPS)作为新型吸附剂,考察了pH、EPS投加量和吸附时间对其在水中吸附Cd2 与Zn2 的性能的影响,以达到剩余活性污泥的资源化利用.结果表明:Cd2 和Zn2 的最佳吸附条件为:pH=6,EPS的最佳投加量分别为375mg/L和250 mg/L,Cd2 和Zn2 的吸附率分别达到36%和51%.EPS对Cd2 和Zn2 的吸附过程均可分为两个阶段,分别在90 min和60 min时达到吸附平衡.离子共存实验发现,EPS对Cd2 的选择吸附性强于Zn2 ;Freundlich和Langmuir方程均可描述EPS在常温下吸附Cd2 的热力学过程;而Zn2 的吸附等温线与Langmuir方程拟合更好.拟合系数显示,EPS对Zn2 的吸附稳定性、吸附能力和亲和力均比对Cd2 的吸附强.表明剩余活性污泥EPS作为吸附剂前景广阔,具有更深的研究价值.  相似文献   

3.
通过考察污泥调理过程中滤饼含水率、束缚水含量变化、EPS各层组分分布、傅里叶红外光谱等指标,研究表面活性剂作用下,胞外聚合物分布与束缚水含量的变化关系。研究结果表明:十二烷基二甲基苄基氯化铵(1227)的加入导致污泥中紧密结合的胞外聚合物(TB-EPS)含量降低,松散结合的胞外聚合物(LB-EPS)、黏液层胞外聚合物(S-EPS)含量升高,有效降低束缚水的含量,提高了污泥脱水效果。表面活性剂投加量为75 mg·g-1时,污泥中束缚水含量降至1.58 g·g-1,污泥滤饼含水率降至65.78%。在表面活性剂作用下,部分EPS水解生成小分子有机物,S-EPS中有机官能团的总量和种类都有明显增多。TB-EPS占污泥中EPS总量的大部分,其中,蛋白质、多糖与束缚水存在显著的正相关性,是影响污泥束缚水含量的主要因素。  相似文献   

4.
为了快速、高效地提取活性污泥的胞外聚合物(extracellular polymeric substances,EPS),采用4种方法提取紧密结合型EPS(tightly bound EPS,TB-EPS),对比不同提取方法的优缺点,考察TB-EPS对Mn2+吸附性能的影响,研究了TB-EPS的吸附机理.结果表明:加热法提取的TB-EPS效率高,方法简单,操作方便,不破坏细胞结构.加热法提取的TB-EPS用于吸附重金属Mn2+,其最大吸附率为53.8%,吸附过程符合二级反应动力学特征和Langmuir吸附等温方程,该吸附以化学吸附为主.在TB-EPS中色氨酸和酪氨酸的疏水作用是主要的吸附机理.  相似文献   

5.
活性污泥和生物膜的胞外聚合物提取方法比较   总被引:4,自引:0,他引:4  
采用加热法、NaOH法、硫酸法、阳离子交换树脂(CER)法、甲醛-NaOH法对3个污水厂的5种生物膜和活性污泥的胞外聚合物(EPS)进行提取实验研究,并以常规高速离心作为对照组.结果表明,不同的提取方法对同一种污泥的EPS各组分构成影响较大.一般情况下,提取总量按从多到少排列如下:NaOH法〉加热法〉甲醛-NaOH法〉...  相似文献   

6.
利用改良离心法从好氧颗粒污泥中提取胞外聚合物(EPS),并研究其对重金属废水中Pb2+和Cd2+的吸附行为。结果表明,EPS对Pb2+和Cd2+具有很强的吸附能力,吸附行为符合Langmuir等温式,拟合得到的最大吸附量分别可达534.76和478.47 mg/g。Pb2+和Cd2+在EPS上存在竞争吸附,EPS对Pb2+的吸附选择性更强。Cd2+对EPS吸附Pb2+有一定的抑制作用,但Pb2+的存在对EPS吸附Cd2+具有显著的抑制作用。傅立叶红外光谱(FT-IR)和三维荧光光谱(EEM)测定表明,实验提取的EPS含有大量疏水和亲水性基团,因此可通过络合作用、离子交换、螯合等多种作用与重金属发生强结合。对重金属起主要吸附作用的是存在于EPS蛋白质组分中的—COOH,—NH2,—CH2—,—OH及—C=O官能团。研究表明,EPS吸附Pb2+的主要机理为离子交换和络合作用,而对Cd2+的吸附则主要通过络合作用完成。  相似文献   

7.
胞外聚合物(EPS)是细胞外由微生物分泌的一种三维空间的大分子聚合物,其在污水生物处理系统中具有重要的作用.胞外聚合物具有一定吸附性能,使其在污水净化、环境治理方面有一定优势,既能吸附有机混合物,又能吸附无机金属离子,有很好的解毒作用.生物膜中一些金属离子的存在会对胞外聚合物产生相关影响,如Cu~(2+)、 Pb~(2+)、 Ni~(2+)、Al~(3+)等.对于胞外聚合物的提取,有高速离心法、加热法、EDTA法、NaOH法、超声法、CER法等,不同提取方法会对胞外聚合物的组分产生较大的影响.文章从胞外聚合物的性能、金属离子对胞外聚合物的影响、胞外聚合物的提取方法以及变化特征等方面阐述EPS的研究进展.  相似文献   

8.
以长春市某污水处理厂初沉池出水为原水在实验室进行了低温污水处理模拟试验,研究了低温活性污泥 EPS 特性及其对污泥沉降性能的影响。试验温度控制在15℃、13℃、11℃、9℃、7℃、5℃、3℃,7个温度下,在处理效果稳定的条件下,检测分析了活性污泥中胞外聚合物(EPS)、沉淀性能,研究了其变化规律并探讨了相关性。研究表明活性污泥中 EPS 的含量随温度的降低而减少,而 EPS 中的多糖含量则随之升高,导致活性污泥的沉降性能也随温度降低而变差。  相似文献   

9.
浓缩污泥中胞外聚合物组分与脱水性的关系   总被引:4,自引:0,他引:4  
为研究浓缩污泥中胞外聚合物的组分(蛋白质和多糖) 对污泥脱水性的影响, 对添加和未添加腐殖土的浓缩污泥进行21天的高温(55℃) 厌氧消化试验。通过离心和热提取的方法分别提取浓缩污泥中的溶解态胞外聚合物(dissolve-EPS)及结合态胞外聚合物(bound-EPS),并对污泥的溶解态和结合态的胞外聚合物以及脱水性(毛细吸水时间表征) 进行跟踪监测。结果表明, 高温厌氧消化过程中, 污泥毛细吸水时间随时间的增加逐渐增大。统计分析结果表明, 污泥毛细吸水时间与溶解态蛋白质和多糖有显著地正相关(0.868, 0.959), 与结合态蛋白质和多糖有显著地负相关(-0.783, -0.831)。厌氧消化21天后, 添加腐殖土的污泥中溶解态多糖比未添加的低 7% 左右, 而溶解态蛋白质、结合态蛋白质和多糖没有明显变化。添加腐殖土的污泥毛细吸水时间比未添加的降低了25% , 这表明, 污泥中溶解态多糖对污泥的脱水性起主要作用。  相似文献   

10.
利用改良离心法从好氧颗粒污泥中提取胞外聚合物(EPS), 并研究其对重金属废水中Pb2+和Cd2+的吸附行为。结果表明, EPS对Pb2+和Cd2+具有很强的吸附能力, 吸附行为符合Langmuir等温式, 拟合得到的最大吸附量分别可达534.76 和478.47 mg/g。Pb2+和Cd2+在EPS上存在竞争吸附, EPS对Pb2+的吸附选择性更强。Cd2+对EPS吸附Pb2+有一定的抑制作用, 但Pb2+的存在对EPS吸附Cd2+具有显著的抑制作用。傅立叶红外光谱(FT-IR)和三维荧光光谱(EEM)测定表明, 实验提取的EPS含有大量疏水和亲水性基团, 因此可通过络合作用、离子交换、螯合等多种作用与重金属发生强结合。对重金属起主要吸附作用的是存在于EPS蛋白质组分中的?COOH, ?NH2, ?CH2?, ?OH及?C=O官能团。研究表明, EPS吸附Pb2+的主要机理为离子交换和络合作用, 而对Cd2+的吸附则主要通过络合作用完成。  相似文献   

11.
在测定4种颗粒状活性炭常规性能指标(比表面积、亚甲基兰值、碘值、苯酚值)的基础上,测定了4种活性炭对水中微量内分泌干扰物邻苯二甲酸二丁酯(DBP)的吸附等温线以及吸附效果,同时对活性炭的电化学再生进行了研究.结果表明:35℃时,4种活性炭均能有效地去除DBP,去除率高达90%以上;煤质1.0、煤质1.5、果壳和椰壳饱和吸附量分别为52.52 mg/g、29.90 mg/g、159.3 mg/g和147.2 mg/g.根据Langmuir和Freundlich吸附模型对DBP吸附等温线进行拟合,更符合Freundlich模型.活性炭对DBP吸附量的大小与其比表面积、亚甲基兰吸附量、碘值、苯酚值存在一定的关系,为选择合适的活性炭来处理水中微量邻苯二甲酸类化合物提供参考依据.  相似文献   

12.
活性污泥性质对基因工程菌吸附影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基因工程菌在活性污泥中的生存状况是决定其生物强化作用的关键因素,活性污泥吸附对基因工程菌生存状况具有重要影响。在典型活性污泥中,考察了吸附于活性污泥的基因工程菌生存状况,以及活性污泥性质对其基因工程菌吸附能力的影响。结果表明,基因工程菌吸附于污泥絮体后,更有利于其生存。污泥质量浓度增大,吸附能力减小;污泥粒径减小,吸附能力增加;污泥EPS含量越高,吸附能力越强。同时,在相同污泥质量浓度下,普通活性污泥吸附能力大于MBR污泥,表明污泥有机质含量比污泥粒径对基因工程菌吸附的影响更显著。在接种密度为105~1014CFU/mL时,普通活性污泥和MBR污泥对基因工程菌的吸附基本符合Freundlich等温吸附方程。  相似文献   

13.
研究发现不同质量浓度硝酸铈对活性污泥的比耗氧速率、增长速度、脱氢酶活性及微生物相产生不同程度的影响,质量浓度为50mg/L时对改善污泥性能有较为明显的作用。以普通活性污泥为接种污泥,葡萄糖和乙酸钠为碳源,在两个SBR反应器内对比污泥颗粒化过程。通过监测EPS组分、污泥疏水性、MLSS、SVI、COD、TN和TP,发现硝酸铈可以促进污泥颗粒化过程。稳定后的含铈颗粒污泥同时具有脱氮除磷作用,COD、TN、TP去除率分别达到95%、80%和85%。  相似文献   

14.
污水处理生物絮体絮凝沉淀机理分析的综述   总被引:4,自引:0,他引:4  
通过介绍胞外聚合物(EPS)架桥、DLVO理论和疏水作用力3种最具代表性的理论体系,阐述了生物絮体絮凝沉淀过程、影响因素以及有待解决的问题.分析结果表明:生物絮体分泌的EPS所含蛋白质含量越少,其絮体沉淀效果越好;而疏水作用力却随EPS中蛋白质增加而加强,疏水作用力较大生物絮体絮凝能力较好,疏水作用力同时受到表面电荷的影响.此外,DLVO理论解决了EPS架桥无法解释的抗絮凝反应问题,离子强度在一定范围内越大,则絮体絮凝能力越好.  相似文献   

15.
Phosphorus removal performance in an aerobic/aerobic sequencing batch reactor (SBR) supplied with glucose as carbon source was investigated. It was found that there was no phosphate release concomitant with the storing of poly-β-hydroxyalkanoate (PHA) during the anaerobic phase. Whereas, glycogen was soon built up followed by rapid consumption, at the same time, glucose was depleted rapidly. Based on the analysis of different fractions of phosphorus in activated sludge, the relative ratio of organically bound phosphorus in sludge changed at the end of anaerobic and aerobic phases. The ratios were 45.3% and 51.8% respectively. This showed that the polyphosphate broke down during the anaerobic phase to supply part of energy for PHA synthesis. The reason why there was no phosphate release might be the biosorption effect of extracellular exopolymers (EPS). It was also proved by the analysis of EPS with scanning electron microscopy (SEM) combined with energy dispersive spectrometry (EDS). The phosphorus weight percentage of EPS at the end of anaerobic phase was 9.22%.  相似文献   

16.
低温条件下(15~3℃),在活性污泥法处理城市污水实验室研究过程中,对污泥浓度、污泥沉降性能、粒度、胞外聚合物(EPS)、脱氢酶活性、摄氧速率、污泥膨胀进行了研究。研究结果表明:随着温度降低,污泥沉降性能变差,引起沉降性能变差的原因是污泥浓度与胞外聚合物共同作用的结果;温度降低过程中,胞外聚合物分泌量呈增大趋势;微生物活性降低,并在15~13℃间降低变化明显;产生污泥膨胀现象的原因可能是丝状菌黏性物质分泌过多造成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号