首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Female fertility and offspring health are critically dependent on the maintenance of an adequate supply of high-quality oocytes. Like somatic cells, oocytes are subject to a variety of different types of DNA damage arising from endogenous cellular processes and exposure to exogenous genotoxic stressors. While the repair of intentionally induced DNA double strand breaks in gametes during meiotic recombination is well characterised, less is known about the ability of oocytes to repair pathological DNA damage and the relative contribution of DNA repair to oocyte quality is not well defined. This review will discuss emerging data suggesting that oocytes are in fact capable of efficient DNA repair and that DNA repair may be an important mechanism for ensuring female fertility, as well as the transmission of high-quality genetic material to subsequent generations.  相似文献   

2.
The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.  相似文献   

3.
4.
Firefly luciferase is a member of the acyl-adenylate/thioester-forming superfamily of enzymes and catalyzes the oxidation of firefly luciferin with molecular oxygen to emit light. Knowledge of the luminescence mechanism catalyzed by firefly luciferase has been gathered, leading to the discovery of a novel catalytic function of luciferase. Recently, we demonstrated that firefly luciferase has a catalytic function of fatty acyl-CoA synthesis from fatty acids in the presence of ATP, Mg2+ and coenzyme A. Based on identification of fatty acyl-CoA genes in firefly, Drosophila, and non-luminous click beetles, we then proposed that the evolutionary origin of firefly luciferase is a fatty acyl-CoA synthetase in insects. Further, we succeeded in converting the fatty acyl-CoA synthetase of non-luminous insects into functional luciferase showing luminescence activity by site-directed mutagenesis.  相似文献   

5.
6.
Alkyltransferase-like proteins (ATLs) play a role in the protection of cells from the biological effects of DNA alkylation damage. Although ATLs share functional motifs with the DNA repair protein and cancer chemotherapy target O 6-alkylguanine-DNA alkyltransferase, they lack the reactive cysteine residue required for alkyltransferase activity, so its mechanism for cell protection was previously unknown. Here we review recent advances in unraveling the enigmatic cellular protection provided by ATLs against the deleterious effects of DNA alkylation damage. We discuss exciting new evidence that ATLs aid in the repair of DNA O 6-alkylguanine lesions through a novel repair cross-talk between DNA-alkylation base damage responses and the DNA nucleotide excision repair pathway.  相似文献   

7.
Summary Dithyreanitrile, a novel sulfur-containing indole alkaloid, was isolated from the seeds ofDithyrea wislizenii (Cruciferae). Dithyreanitrile inhibits feeding of fall armyworm (Spodoptera frugiperda) and European corn borer (Ostrinia nubilalis) larvae. Dithyreanitrile, the first natural product with two sulfur atoms and a nitrile attached to the same carbon, was characterized by X-ray diffraction, spectroscopy, and chemical synthesis.  相似文献   

8.
Summary Contrary to the techniques of mere association, column chromatography has revealed a protoreceptor that accepts aldosterone agonists and antagonists only in the physiological target, the kidney, and is absent in non-targets, liver and serum; it is furthermore different from the aldosterone specific receptor in renal cytosol.Supported in part by grants from the CNRS AI 03 1917 and UER Broussais Hôtel Dieu.  相似文献   

9.
Dithyreanitrile, a novel sulfur-containing indole alkaloid, was isolated from the seeds of Dithyrea wislizenii (Cruciferae). Dithyreanitrile inhibits feeding of fall armyworm (Spodoptera frugiperda) and European corn borer (Ostrinia nubilalis) larvae. Dithyreanitrile, the first natural product with two sulfur atoms and a nitrile attached to the same carbon, was characterized by X-ray diffraction, spectroscopy, and chemical synthesis.  相似文献   

10.
The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.  相似文献   

11.
Mouse models of DNA repair deficiency are useful tools for determining susceptibility to disease. Cancer predisposition and premature aging are commonly impacted by deficiencies in DNA repair, presumably as a function of reduced genomic fitness. In this review, a comprehensive analysis of all DNA repair mutant mouse models has been completed in order to assess the importance of haploinsufficiency for these genes. This analysis brings to light a clear role for haploinsufficiency in disease predisposition. Unfortunately, much of the data on heterozygous models are buried or underinvestigated. In light of a better understanding that the role of DNA repair haploinsufficiency may play in penetrance of other oncogenic or disease causing factors, it may be in the interest of human health and disease prevention to further investigate the phenotypes in many of these mouse models.  相似文献   

12.
RNA polymerases are important enzymes involved in the realization of the genetic information encoded in the genome. Thereby, DNA sequences are used as templates to synthesize all types of RNA. Besides these classical polymerases, there exists another group of RNA polymerizing enzymes that do not depend on nucleic acid templates. Among those, tRNA nucleotidyltransferases show remarkable and unique features. These enzymes add the nucleotide triplet C–C–A to the 3′-end of tRNAs at an astonishing fidelity and are described as “CCA-adding enzymes”. During this incorporation of exactly three nucleotides, the enzymes have to switch from CTP to ATP specificity. How these tasks are fulfilled by rather simple and small enzymes without the help of a nucleic acid template is a fascinating research area. Surprising results of biochemical and structural studies allow scientists to understand at least some of the mechanistic principles of the unique polymerization mode of these highly unusual enzymes.  相似文献   

13.
Numerous proteins are involved in the nucleotide excision repair (NER) and DNA mismatch repair (MMR) pathways. The function and specificity of these proteins during the mitotic cell cycle has been actively investigated, in large part due to the involvement of these systems in human diseases. In contrast, comparatively little is known about their functioning during meiosis. At least three repair pathways operate during meiosis in the yeast Saccharomyces cerevisiae to repair mismatches that occur as a consequence of heteroduplex formation in recombination. The first pathway is similar to the one acting during postreplicative mismatch repair in mitotically dividing cells, while two pathways are responsible for the repair of large loops during meiosis, using proteins from MMR and NER systems. Some MMR proteins also help prevent recombination between diverged sequences during meiosis, and act late in recombination to affect the resolution of crossovers. This review will discuss the current status of DNA mismatch repair and nucleotide excision repair proteins during meiosis, especially in the yeast S. cerevisiae. Received 21 September 1998; received after revision 23 November 1998; accepted 23 November 1998  相似文献   

14.
Zusammenfassung Kalciumchlorid und Natriumkarbonat bilden in einem Agar-Gel rhythmische Niederschläge. Aber das entstandene Kalciumkarbonat fällt unter bestimmten Bedingungen hier nicht in den bekannten Liesegangschen Ringen aus, sondern in völlig isolierten kelinen und kleinsten Inselchen. Eine Theorie des Phänomens wird diskutiert.  相似文献   

15.
Cathepsin A/protective protein [3.4.16.5], carboxypeptidase A, is a lysosomal serine protease with structural homology to yeast (Saccharomyces cerevisiae) carboxypeptidase Y. Cathepsin A is a member of the alpha/beta hydrolase fold family and has been suggested to share a common ancestral relationship with other alpha/beta hydrolase fold enzymes, such as cholinesterases. Several lines of evidence indicate that cathepsin A is a multicatalytic enzyme with deamidase and esterase in addition to carboxypeptidase activities. Cathepsin A was recently identified in human platelets as deamidase. In vitro, it hydrolyzes a variety of bioactive peptide hormones including tachykinins, suggesting that extralysosomal cathepsin A plays a role in regulation of bioactive peptide functions. Recent reports emphasize the lysosomal protective function of cathepsin A rather than its protease function. The protective function of cathepsin A is distinct from its catalytic function. Human lysosomal beta-galactosidase and neuraminidase exist as a high molecular weight enzyme complex, in which there is a 54-kDa glycoprotein termed 'lysosomal protective protein'. Based on cell culture studies, protective protein was found to protect both beta-galactosidase and neuraminidase from intralysosomal proteolysis by forming a multienzyme complex and was shown to be deficient in patients with galactosialidosis, a combined deficiency of beta-galactosidase and neuraminidase. Molecular cloning and gene expression studies have disclosed that protective protein is cathepsin A. The cathepsin A precursor has the potential to restore both beta-galactosidase and neuraminidase activities in fibroblasts from patients with galactosialidosis. Cathepsin A knockout mice showed a phenotype similar to human galactosialidosis and the deficient phenotype found in the mutant mice was corrected by transplanting erythroid precursor cells overexpressing cathepsin A. Collectively, these findings demonstrate the significance of cathepsin A as a key molecule in the onset of galactosialidosis and also highlight the therapeutic potential of the cathepsin A precursor for patients with galactosialidosis.  相似文献   

16.
17.
18.
Zusammenfassung Ist das Wachstum vonPenicillium urticae und anderer Pilze im Gleichgewicht gestört, so kommt es zu plötzlicher Akkumulierung wichtiger metabolischer Zwischenprodukte. Diese induzieren die Bildung neuer sekundärer Metabolite synthetisierender Enzyme, was Anlass zu weiterer Enzymentstehung ist und die Diversität der Stoffwechselendprodukte bestimmt.  相似文献   

19.
Lysyl oxidase: an oxidative enzyme and effector of cell function   总被引:8,自引:1,他引:7  
Lysyl oxidase (LOX) oxidizes the side chain of peptidyl lysine converting specific lysine residues to residues of alpha-aminoadipic-delta-semialdehyde. This posttranslational chemical change permits the covalent crosslinking of the component chains of collagen and those of elastin, thus stabilizing the fibrous deposits of these proteins in the extracellular matrix. Four LOX-like (LOXL) proteins with varying degrees of similarity to LOX have been described, constituting a family of related proteins. LOX is synthesized as a preproprotein which emerges from the cell as proLOX and then is processed to the active enzyme by proteolysis. In addition to elastin and collagen, LOX can oxidize lysine within a variety of cationic proteins, suggesting that its functions extend beyond its role in the stabilization of the extracellular matrix. Indeed, recent findings reveal that LOX and LOXL proteins markedly influence cell behavior including chemotactic responses, proliferation, and shifts between the normal and malignant phenotypes.  相似文献   

20.
The anti-metabolite 5-fluorouracil (5-FU) is employed clinically to manage solid tumors including colorectal and breast cancer. Intracellular metabolites of 5-FU can exert cytotoxic effects via inhibition of thymidylate synthetase, or through incorporation into RNA and DNA, events that ultimately activate apoptosis. In this review, we cover the current data implicating DNA repair processes in cellular responsiveness to 5-FU treatment. Evidence points to roles for base excision repair (BER) and mismatch repair (MMR). However, mechanistic details remain unexplained, and other pathways have not been exhaustively interrogated. Homologous recombination is of particular interest, because it resolves unrepaired DNA intermediates not properly dealt with by BER or MMR. Furthermore, crosstalk among DNA repair pathways and S-phase checkpoint signaling has not been examined. Ongoing efforts aim to design approaches and reagents that (i) approximate repair capacity and (ii) mediate strategic regulation of DNA repair in order to improve the efficacy of current anticancer treatments. Received 08 September 2008; received after revision 25 September 2008; accepted 03 October 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号