首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Melatonin regulation of antioxidant enzyme gene expression   总被引:15,自引:0,他引:15  
Antioxidant enzymes (AOEs) are part of the primary cellular defense against free radicals induced by toxins and/or spontaneously formed in cells. Melatonin (MLT) has received much attention in recent years due to its direct free radical scavenging and antioxidant properties. In the present work we report that MLT, at physiological serum concentrations (≈ 1 nM), increases the mRNA of both superoxide dismutases (SODs) and glutathione peroxidase (GPx) in two neuronal cell lines. The MLT effect on both SODs and GPx mRNA was mediated by a de novo synthesized protein. MLT alters mRNA stability for Cu-Zn SOD and GPx. Experiments with a short time treatment (pulse action) of MLT suggest that the regulation of AOE gene expression is likely to be receptor mediated, because 1-h treatment with MLT results in the same response as a 24-h treatment. Received 18 June 2002; received after revision 5 August 2002; accepted 27 August 2002 RID="*" ID="*"Corresponding author.  相似文献   

4.
5.
On a cellular level, formation of memory is based on a selective change in synaptic efficacy that is both fast and, in case of important information, long-lasting. Rapidity of cellular changes is achieved by modifying preexisting synaptic molecules (receptors, ion channels), which instantaneously alters the efficacy of synaptic transmission. Endurance, that is the formation of long-term memory (LTM), is based on transient and perhaps also long-lasting changes in protein synthesis. A number of different methods exist to interfere with the synthesis of specific proteins or proteins in general. Other methods, in turn, help to identify proteins whose synthesis is changed following learning. These mostly molecular methods are briefly described in the present review. Their successful application in a variety of memory paradigms in invertebrates and vertebrates is illustrated. The data support the importance of selective changes in gene expression for LTM. Proteins newly synthesized during memory consolidation are likely to contribute to restructuring processes at the synapse, altering the efficiency of transmission beyond the scope of STM. Increased or, less often, decreased synthesis of proteins appears during specific time windows following learning. Recent evidence supports older data suggesting that two or even more waves of protein synthesis exist during the consolidation period. It is expected that the new molecular methods will help to identify and characterize molecules whose expression changes during LTM formation even in complex vertebrate learning paradigms.  相似文献   

6.
7.
8.
Chromatin regulators have recently emerged as key players in the control of tissue development and tumorigenesis. One specific chromatin regulator, the Polycomb complex, has been shown to regulate the identity of embryonic stem cells, but its role in controlling fates of multipotent progenitors in developing tissues is still largely unknown. Recent findings have revealed that this complex plays a critical role in control of skin stem cell renewal and differentiation. Moreover, the expression of Polycomb complex components is often aberrant in skin diseases, including skin cancers. This review will detail recent findings on Polycomb control of skin and highlight critical unknown questions.  相似文献   

9.
Quantitative control of gene expression occurs at multiple levels, including the level of translation. Within the overall process of translation, most identified regulatory processes impinge on the initiation phase. However, recent studies have revealed that the elongation phase can also regulate translation if elongation and initiation occur with specific, not mutually compatible rate parameters. Translation elongation then limits the overall amount of protein that can be made from an mRNA. Several recently discovered control mechanisms of biological pathways are based on such elongation control. Here, we review the molecular mechanisms that determine ribosome speed in eukaryotic organisms, and discuss under which conditions ribosome speed can become the controlling parameter of gene expression levels.  相似文献   

10.
11.
12.
The means by which oxygen intervenes in gene expression has been examined in considerable detail in the metabolically versatile bacterium Rhodobacter sphaeroides. Three regulatory systems are now known in this organism, which are used singly and in combination to modulate genes in response to changing oxygen availability. The outcome of these regulatory events is that the molecular machinery is present for the cell to obtain energy by means that are best suited to prevailing conditions, while at the same time maintaining cellular redox balance. Here, we explore the dangers associated with molecular oxygen relative to the various metabolisms used by R. sphaeroides, and then present the most recent findings regarding the features and operation of each of the three regulatory systems which collectively mediate oxygen control in this organism.Received 26 June 2003; received after revision 30 July 2003; accepted 8 August 2003  相似文献   

13.
The myelin proteolipid protein (PLP) gene (Plp) encodes the most abundant protein found in myelin from the central nervous system (CNS). Expression of the gene is regulated in a spatiotemporal manner with maximal levels of expression occurring in oligodendrocytes during the active myelination period of CNS development, although other cell types in the CNS as well as in the periphery can express the gene to a much lower degree. In oligodendrocytes, Plp gene expression is tightly regulated. Underexpression or overexpression of the gene has been shown to have adverse effects in humans and other vertebrates. In light of this strict control, this review provides an overview of the current knowledge of Plp gene regulation.Received 4 August 2003; received after revision 17 September 2003; accepted 24 September 2003  相似文献   

14.
Polyamine-dependent gene expression   总被引:15,自引:0,他引:15  
The polyamines spermidine and spermine along with the diamine putrescine are involved in many cellular processes, including chromatin condensation, maintenance of DNA structure, RNA processing, translation and protein activation. The polyamines influence the formation of compacted chromatin and have a well-established role in DNA aggregation. Polyamines are used in the posttranslational modification of eukaryotic initiation factor 5A, which regulates the transport and processing of specific RNA. The polyamines also participate in a novel RNA-decoding mechanism, a translational frameshift, of at least two known genes, the TY1 transposon and mammalian antizyme. Polyamines are crucial for their own regulation and are involved in feedback mechanisms affecting both polyamine synthesis and catabolism. Recently, it has become apparent that the polyamines are able to influence the action of the protein kinase casein kinase 2. Here we address several roles of polyamines in gene expression.Received 27 November 2002; received after revision 9 January 2003; accepted 31 January 2003  相似文献   

15.
Social environmental conditions, particularly the experience of social adversity, have long been connected with health and mortality in humans and other social mammals. Efforts to identify the physiological basis for these effects have historically focused on their neurological, endocrinological, and immunological consequences. Recently, this search has been extended to understanding the role of gene regulation in sensing, mediating, and determining susceptibility to social environmental variation. Studies in laboratory rodents, captive primates, and human populations have revealed correlations between social conditions and the regulation of a large number of genes, some of which are likely causal. Gene expression responses to the social environment are, in turn, mediated by a set of underlying regulatory mechanisms, of which epigenetic marks are the best studied to date. Importantly, a number of genes involved in the response to the social environment are also associated with susceptibility to other external stressors, as well as certain diseases. Hence, gene regulatory studies are a promising avenue for understanding, and potentially developing strategies to address, the effects of social adversity on health.  相似文献   

16.
DNA sequence studies of mutated and wild type alleles of an intron in the mosaic mitochondrial gene for cytochrome b have revealed the possible existence of a protein coded in the intron and involved in RNA splicing. This protein would be endowed with properties of intrinsic autotomy of its own messenger RNA.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号