首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M B Calford  R Tweedale 《Nature》1988,332(6163):446-448
The somatosensory cortex of adult mammals has been shown to have a capacity to reorganize when inputs are removed by cutting afferent nerves or amputating a part of the body. The area of cortex that would normally respond to stimulation of the missing input can become responsive to inputs from other parts of the body surface. Although a few animals have been studied with repeat recording, no attempt has been made to follow the time-course of changes at cortical loci and the immediate effects of a small amputation have not been reported. We have followed the changes in response in the primary somatosensory cortex in the flying-fox following amputation of the single exposed digit on the forelimb. Immediately after amputation, neurons in the area of cortex receiving inputs from the missing digit were not silent but responded to stimulation of adjoining regions of the digit, hand, arm and wing. In the week following amputation, the enlarged receptive fields shrank until they covered only the skin around the amputation wound. The immediate response is interpreted as a removal of inhibition and the subsequent shrinking of the field may be due to re-establishment of the inhibitory balance in the affected cortex and its inputs.  相似文献   

2.
In the rodent primary somatosensory cortex, the configuration of whiskers and sinus hairs on the snout and of receptor-dense zones on the paws is topographically represented as discrete modules of layer IV granule cells (barrels) and thalamocortical afferent terminals. The role of neural activity, particularly activity mediated by NMDARs (N-methyl-D-aspartate receptors), in patterning of the somatosensory cortex has been a subject of debate. We have generated mice in which deletion of the NMDAR1 (NR1) gene is restricted to excitatory cortical neurons, and here we show that sensory periphery-related patterns develop normally in the brainstem and thalamic somatosensory relay stations of these mice. In the somatosensory cortex, thalamocortical afferents corresponding to large whiskers form patterns and display critical period plasticity, but their patterning is not as distinct as that seen in the cortex of normal mice. Other thalamocortical patterns corresponding to sinus hairs and digits are mostly absent. The cellular aggregates known as barrels and barrel boundaries do not develop even at sites where thalamocortical afferents cluster. Our findings indicate that cortical NMDARs are essential for the aggregation of layer IV cells into barrels and for development of the full complement of thalamocortical patterns.  相似文献   

3.
G T Finnerty  L S Roberts  B W Connors 《Nature》1999,400(6742):367-371
Many representations of sensory stimuli in the neocortex are arranged as topographic maps. These cortical maps are not fixed, but show experience-dependent plasticity. For instance, sensory deprivation causes the cortical area representing the deprived sensory input to shrink, and neighbouring spared representations to enlarge, in somatosensory, auditory or visual cortex. In adolescent and adult animals, changes in cortical maps are most noticeable in the supragranular layers at the junction of deprived and spared cortex. However, the cellular mechanisms of this experience-dependent plasticity are unclear. Long-term potentiation and depression have been implicated, but have not been proven to be necessary or sufficient for cortical map reorganization. Short-term synaptic dynamics have not been considered. We developed a brain slice preparation involving rat whisker barrel cortex in vitro. Here we report that sensory deprivation alters short-term synaptic dynamics in both vertical and horizontal excitatory pathways within the supragranular cortex. Moreover, modifications of horizontal pathways amplify changes in the vertical inputs. Our findings help to explain the functional cortical reorganization that follows persistent changes of sensory experience.  相似文献   

4.
Two ordered representations of the body surface, S-I and S-II, have been described on the cortical surface of the brains of a variety of mammals; additional separate topographical maps have been found in the somatosensory cortex of the cat and monkey. Except for minor variations in the placement of the body parts, the basic somatotopy of the maps is remarkably consistent across species. As the reasons for this consistency and the minor variations are unclear, we examined the somatotopy of the bat, whose body plan has been modified extensively so that the forelimb can be used for flight. We report here that in both S-I and S-II of the grey-headed flying fox, not only is the representation of the distal forelimb displaced from its usual position on the map, but the digits are directed caudally instead of rostrally as they are in all other mammals studied. The variant somatotopy appears to reflect the postural differences between flying and walking mammals, supporting the notion that topographical maps may have functional significance apart from their point-to-point connections with the sensory periphery.  相似文献   

5.
Receptive field dynamics in adult primary visual cortex.   总被引:38,自引:0,他引:38  
C D Gilbert  T N Wiesel 《Nature》1992,356(6365):150-152
The adult brain has a remarkable ability to adjust to changes in sensory input. Removal of afferent input to the somatosensory, auditory, motor or visual cortex results in a marked change of cortical topography. Changes in sensory activity can, over a period of months, alter receptive field size and cortical topography. Here we remove visual input by focal binocular retinal lesions and record from the same cortical sites before and within minutes after making the lesion and find immediate striking increases in receptive field size for cortical cells with receptive fields near the edge of the retinal scotoma. After a few months even the cortical areas that were initially silenced by the lesion recover visual activity, representing retinotopic loci surrounding the lesion. At the level of the lateral geniculate nucleus, which provides the visual input to the striate cortex, a large silent region remains. Furthermore, anatomical studies show that the spread of geniculocortical afferents is insufficient to account for the cortical recovery. The results indicate that the topographic reorganization within the cortex was largely due to synaptic changes intrinsic to the cortex, perhaps through the plexus of long-range horizontal connections.  相似文献   

6.
Sensorimotor coordination emerges early in development. The maturation period is characterized by the establishment of somatotopic cortical maps, the emergence of long-range cortical connections, heightened experience-dependent plasticity and spontaneous uncoordinated skeletal movement. How these various processes cooperate to allow the somatosensory system to form a three-dimensional representation of the body is not known. In the visual system, interactions between spontaneous network patterns and afferent activity have been suggested to be vital for normal development. Although several intrinsic cortical patterns of correlated neuronal activity have been described in developing somatosensory cortex in vitro, the in vivo patterns in the critical developmental period and the influence of physiological sensory inputs on these patterns remain unknown. We report here that in the intact somatosensory cortex of the newborn rat in vivo, spatially confined spindle bursts represent the first and only organized network pattern. The localized spindles are selectively triggered in a somatotopic manner by spontaneous muscle twitches, motor patterns analogous to human fetal movements. We suggest that the interaction between movement-triggered sensory feedback signals and self-organized spindle oscillations shapes the formation of cortical connections required for sensorimotor coordination.  相似文献   

7.
Knowledge or experience is voluntarily recalled from memory by reactivation of the neural representations in the cerebral association cortex. In inferior temporal cortex, which serves as the storehouse of visual long-term memory, activation of mnemonic engrams through electric stimulation results in imagery recall in humans, and neurons can be dynamically activated by the necessity for memory recall in monkeys. Neuropsychological studies and previous split-brain experiments predicted that prefrontal cortex exerts executive control upon inferior temporal cortex in memory retrieval; however, no neuronal correlate of this process has ever been detected. Here we show evidence of the top-down signal from prefrontal cortex. In the absence of bottom-up visual inputs, single inferior temporal neurons were activated by the top-down signal, which conveyed information on semantic categorization imposed by visual stimulus-stimulus association. Behavioural performance was severely impaired with loss of the top-down signal. Control experiments confirmed that the signal was transmitted not through a subcortical but through a fronto-temporal cortical pathway. Thus, feedback projections from prefrontal cortex to the posterior association cortex appear to serve the executive control of voluntary recall.  相似文献   

8.
A Ghosh  A Antonini  S K McConnell  C J Shatz 《Nature》1990,347(6289):179-181
The neurons of layer 4 in the adult cerebral cortex receive their major ascending inputs from the thalamus. In development, however, thalamic axons arrive at the appropriate cortical area long before their target layer 4 neurons have migrated into the cortical plate. The axons accumulate and wait in the zone below the cortical plate, the subplate, for several weeks before invading the cortical plate. The subplate is a transient zone that contains the first postmitotic neurons of the telencephalon. These neurons mature well before other cortical neurons, and disappear by cell death after the thalamic axons have grown into the overlying cortical plate. The close proximity of growing thalamocortical axons and subplate neurons suggests that they might be involved in interactions important for normal thalamocortical development. Here we show that early in development the deletion of subplate neurons located beneath visual cortex prevents axons from the lateral geniculate nucleus of the thalamus from recognizing and innervating visual cortex, their normal target. In the absence of subplate neurons, lateral geniculate nucleus axons continue to grow in the white matter past visual cortex despite the presence of their target layer 4 neurons. Thus the transient subplate neurons are necessary for appropriate cortical target selection by thalamocortical axons.  相似文献   

9.
de la Rocha J  Doiron B  Shea-Brown E  Josić K  Reyes A 《Nature》2007,448(7155):802-806
Populations of neurons in the retina, olfactory system, visual and somatosensory thalamus, and several cortical regions show temporal correlation between the discharge times of their action potentials (spike trains). Correlated firing has been linked to stimulus encoding, attention, stimulus discrimination, and motor behaviour. Nevertheless, the mechanisms underlying correlated spiking are poorly understood, and its coding implications are still debated. It is not clear, for instance, whether correlations between the discharges of two neurons are determined solely by the correlation between their afferent currents, or whether they also depend on the mean and variance of the input. We addressed this question by computing the spike train correlation coefficient of unconnected pairs of in vitro cortical neurons receiving correlated inputs. Notably, even when the input correlation remained fixed, the spike train output correlation increased with the firing rate, but was largely independent of spike train variability. With a combination of analytical techniques and numerical simulations using 'integrate-and-fire' neuron models we show that this relationship between output correlation and firing rate is robust to input heterogeneities. Finally, this overlooked relationship is replicated by a standard threshold-linear model, demonstrating the universality of the result. This connection between the rate and correlation of spiking activity links two fundamental features of the neural code.  相似文献   

10.
von Melchner L  Pallas SL  Sur M 《Nature》2000,404(6780):871-876
An unresolved issue in cortical development concerns the relative contributions of intrinsic and extrinsic factors to the functional specification of different cortical areas. Ferrets in which retinal projections are redirected neonatally to the auditory thalamus have visually responsive cells in auditory thalamus and cortex, form a retinotopic map in auditory cortex and have visual receptive field properties in auditory cortex that are typical of cells in visual cortex. Here we report that this cross-modal projection and its representation in auditory cortex can mediate visual behaviour. When light stimuli are presented in the portion of the visual field that is 'seen' only by this projection, 'rewired' ferrets respond as though they perceive the stimuli to be visual rather than auditory. Thus the perceptual modality of a neocortical region is instructed to a significant extent by its extrinsic inputs. In addition, gratings of different spatial frequencies can be discriminated by the rewired pathway, although the grating acuity is lower than that of the normal visual pathway.  相似文献   

11.
Ohki K  Chung S  Kara P  Hübener M  Bonhoeffer T  Reid RC 《Nature》2006,442(7105):925-928
In the visual cortex of higher mammals, neurons are arranged across the cortical surface in an orderly map of preferred stimulus orientations. This map contains 'orientation pinwheels', structures that are arranged like the spokes of a wheel such that orientation changes continuously around a centre. Conventional optical imaging first demonstrated these pinwheels, but the technique lacked the spatial resolution to determine the response properties and arrangement of cells near pinwheel centres. Electrophysiological recordings later demonstrated sharply selective neurons near pinwheel centres, but it remained unclear whether they were arranged randomly or in an orderly fashion. Here we use two-photon calcium imaging in vivo to determine the microstructure of pinwheel centres in cat visual cortex with single-cell resolution. We find that pinwheel centres are highly ordered: neurons selective to different orientations are clearly segregated even in the very centre. Thus, pinwheel centres truly represent singularities in the cortical map. This highly ordered arrangement at the level of single cells suggests great precision in the development of cortical circuits underlying orientation selectivity.  相似文献   

12.
Poulet JF  Petersen CC 《Nature》2008,454(7206):881-885
Internal brain states form key determinants for sensory perception, sensorimotor coordination and learning. A prominent reflection of different brain states in the mammalian central nervous system is the presence of distinct patterns of cortical synchrony, as revealed by extracellular recordings of the electroencephalogram, local field potential and action potentials. Such temporal correlations of cortical activity are thought to be fundamental mechanisms of neuronal computation. However, it is unknown how cortical synchrony is reflected in the intracellular membrane potential (V(m)) dynamics of behaving animals. Here we show, using dual whole-cell recordings from layer 2/3 primary somatosensory barrel cortex in behaving mice, that the V(m) of nearby neurons is highly correlated during quiet wakefulness. However, when the mouse is whisking, an internally generated state change reduces the V(m) correlation, resulting in a desynchronized local field potential and electroencephalogram. Action potential activity was sparse during both quiet wakefulness and active whisking. Single action potentials were driven by a large, brief and specific excitatory input that was not present in the V(m) of neighbouring cells. Action potential initiation occurs with a higher signal-to-noise ratio during active whisking than during quiet periods. Therefore, we show that an internal brain state dynamically regulates cortical membrane potential synchrony during behaviour and defines different modes of cortical processing.  相似文献   

13.
Ahissar E  Sosnik R  Haidarliu S 《Nature》2000,406(6793):302-306
The anatomical connections from the whiskers to the rodent somatosensory (barrel) cortex form two parallel (lemniscal and paralemniscal) pathways. It is unclear whether the paralemniscal pathway is directly involved in tactile processing, because paralemniscal neuronal responses show poor spatial resolution, labile latencies and strong dependence on cortical feedback. Here we show that the paralemniscal system can transform temporally encoded vibrissal information into a rate code. We recorded the representations of the frequency of whisker movement along the two pathways in anaesthetized rats. In response to varying stimulus frequencies, the lemniscal neurons exhibited amplitude modulations and constant latencies. In contrast, paralemniscal neurons in both thalamus and cortex coded the input frequency as changes in latency. Because the onset latencies increased and the offset latencies remained constant, the latency increments were translated into a rate code: increasing onset latencies led to lower spike counts. A thalamocortical loop that includes cortical oscillations and thalamic gating can account for these results. Thus, variable latencies and effective cortical feedback in the paralemniscal system can serve the processing of temporal sensory cues, such as those that encode object location during whisking. In contrast, fixed time locking in the lemniscal system is crucial for reliable spatial processing.  相似文献   

14.
Polley DB  Kvasnák E  Frostig RD 《Nature》2004,429(6987):67-71
Much of what is known about the functional organization and plasticity of adult sensory cortex is derived from animals housed in standard laboratory cages. Here we report that the transfer of adult rats reared in standard laboratory cages to a naturalistic habitat modifies the functional and morphological organization of the facial whisker representation in the somatosensory 'barrel' cortex. Cortical whisker representations, visualized with repeated intrinsic signal optical imaging in the same animals, contracted by 46% after four to six weeks of exposure to the naturalistic habitat. Acute, multi-site extracellular recordings demonstrated suppressed evoked neuronal responses and smaller, sharper constituent receptive fields in the upper cortical layers (II/III), but not in the thalamic recipient layer (IV), of rats with naturalistic experience. Morphological plasticity of the layer IV barrel field was observed, but on a substantially smaller scale than the functional plasticity. Thus, transferring animals to an environment that promotes the expression of natural, innate behaviours induces a large-scale functional refinement of cortical sensory maps.  相似文献   

15.
Olsen SR  Bortone DS  Adesnik H  Scanziani M 《Nature》2012,483(7387):47-52
After entering the cerebral cortex, sensory information spreads through six different horizontal neuronal layers that are interconnected by vertical axonal projections. It is believed that through these projections layers can influence each other's response to sensory stimuli, but the specific role that each layer has in cortical processing is still poorly understood. Here we show that layer six in the primary visual cortex of the mouse has a crucial role in controlling the gain of visually evoked activity in neurons of the upper layers without changing their tuning to orientation. This gain modulation results from the coordinated action of layer six intracortical projections to superficial layers and deep projections to the thalamus, with a substantial role of the intracortical circuit. This study establishes layer six as a major mediator of cortical gain modulation and suggests that it could be a node through which convergent inputs from several brain areas can regulate the earliest steps of cortical visual processing.  相似文献   

16.
Genetic tracing reveals a stereotyped sensory map in the olfactory cortex.   总被引:16,自引:0,他引:16  
Z Zou  L F Horowitz  J P Montmayeur  S Snapper  L B Buck 《Nature》2001,414(6860):173-179
The olfactory system translates myriad chemical structures into diverse odour perceptions. To gain insight into how this is accomplished, we prepared mice that coexpressed a transneuronal tracer with only one of about 1,000 different odorant receptors. The tracer travelled from nasal neurons expressing that receptor to the olfactory bulb and then to the olfactory cortex, allowing visualization of cortical neurons that receive input from a particular odorant receptor. These studies revealed a stereotyped sensory map in the olfactory cortex in which signals from a particular receptor are targeted to specific clusters of neurons. Inputs from different receptors overlap spatially and could be combined in single neurons, potentially allowing for an integration of the components of an odorant's combinatorial receptor code. Signals from the same receptor are targeted to multiple olfactory cortical areas, permitting the parallel, and perhaps differential, processing of inputs from a single receptor before delivery to the neocortex and limbic system.  相似文献   

17.
Brain changes in response to nerve damage or cochlear trauma can generate pathological neural activity that is believed to be responsible for many types of chronic pain and tinnitus. Several studies have reported that the severity of chronic pain and tinnitus is correlated with the degree of map reorganization in somatosensory and auditory cortex, respectively. Direct electrical or transcranial magnetic stimulation of sensory cortex can temporarily disrupt these phantom sensations. However, there is as yet no direct evidence for a causal role of plasticity in the generation of pain or tinnitus. Here we report evidence that reversing the brain changes responsible can eliminate the perceptual impairment in an animal model of noise-induced tinnitus. Exposure to intense noise degrades the frequency tuning of auditory cortex neurons and increases cortical synchronization. Repeatedly pairing tones with brief pulses of vagus nerve stimulation completely eliminated the physiological and behavioural correlates of tinnitus in noise-exposed rats. These improvements persisted for weeks after the end of therapy. This method for restoring neural activity to normal may be applicable to a variety of neurological disorders.  相似文献   

18.
A Das  C D Gilbert 《Nature》1999,399(6737):655-661
Neurons in primary visual cortex (V1) respond differently to a simple visual element presented in isolation from when it is embedded within a complex image. This difference, a specific modulation by surrounding elements in the image, is mediated by short- and long-range connections within V1 and by feedback from other areas. Here we study the role of short-range connections in this process, and relate it to the layout of local inhomogeneities in the cortical maps of orientation and space. By measuring correlation between neuron pairs located in optically imaged maps of V1 orientation columns we show that the strength of local connections between cells is a graded function of lateral separation across cortex, largely radially symmetrical and relatively independent of orientation preferences. We then show the contextual influence of flanking visual elements on neuronal responses varies systematically with a neuron's position within the cortical orientation map. The strength of this contextual influence on a neuron can be predicted from a model of local connections based on simple overlap with particular features of the orientation map. This indicates that local intracortical circuitry could endow neurons with a graded specialization for processing angular visual features such as corners and T junctions, and this specialization could have its own functional cortical map, linked with the orientation map.  相似文献   

19.
A neuronal analogue of state-dependent learning   总被引:6,自引:0,他引:6  
Shulz DE  Sosnik R  Ego V  Haidarliu S  Ahissar E 《Nature》2000,403(6769):549-553
State-dependent learning is a phenomenon in which the retrieval of newly acquired information is possible only if the subject is in the same sensory context and physiological state as during the encoding phase. In spite of extensive behavioural and pharmacological characterization, no cellular counterpart of this phenomenon has been reported. Here we describe a neuronal analogue of state-dependent learning in which cortical neurons show an acetylcholine-dependent expression of an acetylcholine-induced functional plasticity. This was demonstrated on neurons of rat somatosensory 'barrel' cortex, whose tunings to the temporal frequency of whisker deflections were modified by cellular conditioning. Pairing whisker stimulation with acetylcholine applied iontophoretically yielded selective lasting modification of responses, the expression of which depended on the presence of exogenous acetylcholine. Administration of acetylcholine during testing revealed frequency-specific changes in response that were not expressed when tested without acetylcholine or when the muscarinic antagonist, atropine, was applied concomitantly. Our results suggest that both acquisition and recall can be controlled by the cortical release of acetylcholine.  相似文献   

20.
Ghosh S  Larson SD  Hefzi H  Marnoy Z  Cutforth T  Dokka K  Baldwin KK 《Nature》2011,472(7342):217-220
Sensory information may be represented in the brain by stereotyped mapping of axonal inputs or by patterning that varies between individuals. In olfaction, a stereotyped map is evident in the first sensory processing centre, the olfactory bulb (OB), where different odours elicit activity in unique combinatorial patterns of spatially invariant glomeruli. Activation of each glomerulus is relayed to higher cortical processing centres by a set of ~20-50 'homotypic' mitral and tufted (MT) neurons. In the cortex, target neurons integrate information from multiple glomeruli to detect distinct features of chemically diverse odours. How this is accomplished remains unclear, perhaps because the cortical mapping of glomerular information by individual MT neurons has not been described. Here we use new viral tracing and three-dimensional brain reconstruction methods to compare the cortical projections of defined sets of MT neurons. We show that the gross-scale organization of the OB is preserved in the patterns of axonal projections to one processing centre yet reordered in another, suggesting that distinct coding strategies may operate in different targets. However, at the level of individual neurons neither glomerular order nor stereotypy is preserved in either region. Rather, homotypic MT neurons from the same glomerulus innervate broad regions that differ between individuals. Strikingly, even in the same animal, MT neurons exhibit extensive diversity in wiring; axons of homotypic MT pairs diverge from each other, emit primary branches at distinct locations and 70-90% of branches of homotypic and heterotypic pairs are non-overlapping. This pronounced reorganization of sensory maps in the cortex offers an anatomic substrate for expanded combinatorial integration of information from spatially distinct glomeruli and predicts an unanticipated role for diversification of otherwise similar output neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号