共查询到19条相似文献,搜索用时 46 毫秒
1.
提出采用灰熵并行分析法引导粒子群算法求解多目标优化问题。灰熵并行分析法综合灰色关联分析法与信息熵的特点,对数据序列计算灰关联系数,同时并行地对数据序列计算信息熵及熵值权重,将灰关联系数与熵值权重结合求得灰熵并行关联度。〖JP2〗通过粒子群算法对优化问题的多个目标构建与粒子数相同数量的目标值序列,计算每个序列的灰熵并行关联度值,利用该值作为算法适应度值的分配策略引导粒子进化。以10个典型作业车间调度问题为例进行实验,结果与差分进化算法及遗传算法进行比较,表明灰熵并行分析法可以有效引导各算法进化,使算法在收敛性和分布均匀性方面表现良好,且粒子群算法的优化结果要好于其他两种算法的结果。 相似文献
2.
3.
针对以灰度图像为掩体信号的数据隐藏,提出了一种基于粒子群优化技术的空间域信息隐藏方法。该方法首先运用粒子群优化算法快速搜索到一个较优的映射矩阵,然后将待隐藏的信息通过该映射进行置换;最后,将置换结果嵌入到掩体图像灰度信息中。实验结果表明,与基于遗传算法的信息隐藏方法相比,该算法花费时间少,嵌入信息后的图像质量好。 相似文献
4.
5.
本文讨论了并行控制系统中不同任务之间相似度的量化测度——相似指数的概念,给出了在几种不同情况下相似指数的定义、计算方法及其应用实例。 相似文献
6.
针对粒子群优化(PSO, particle swarm optimization)和高效全局优化(EGO, efficient global optimization)两种算法的特点,提出一种共识粒子群和局部代理模型协同的全局黑箱优化算法(CPSO-LSM, consensus particle swarm optimization and local surrogate model)。该算法固定PSO算法周期对粒子进行分群并在粒子达成共识后停止,将每群粒子周围的优质子区域输出作为代理模型的建模区域,通过比较各区域最优值获得高质量最优解甚至全局最优解。不仅避免了PSO冗长的计算过程、提高了建立代理模型的速度和精度还可以避免陷入局部最优。通过对比其他算法在标准测试函数的仿真结果,CPSO-LSM具有较好的收敛速度和求解精度。 相似文献
8.
针对堆石坝工程物料装运机械组合优化问题的复杂性, 建立了装运机械的多目标非线性组合优化模型(MOOM). 进一步地, 把加权法和惩罚函数引入到带收缩因子的粒子群算法中, 提出了一种新的求解多目标非线性组合优化问题的混合粒子群算法(MI-HPSO). 该算法具有概念简单、参数设置少、收敛速度快及全局搜索能力强的特点. 实证研究表明, MI-HPSO为解决物料装运机械MOOM优化模型提供了有效的决策方案. 相似文献
9.
求解动态优化问题的分叉PSO算法 总被引:1,自引:1,他引:0
近些年来,求解动态环境中的优化问题已经逐渐成为进化计算领域的一个新的研究热点。为了改善一般PSO算法求解这种动态优化问题的能力,现提出了一种采用分叉策略的多粒子群PSO算法。该算法能够利用一个较大的主粒子群不断搜索问题适值曲线上新的峰,而利用从主粒子群中分离出来的若干个较小的子粒子群去跟踪已经发现的峰的变化。通过对一组标准动态测试函数的实验,能够证明所提出的算法在动态环境中具有较强的鲁棒性和适应性。Abstract: Recently,there has been increased interest in evolutionary computation algorithms applied into dynamic environments since many real-world optimization problems are time-varying.Inspired by a forking mechanism,a new multi-swarm optimization algorithm (Forking PSO,FPSO) was proposed to enhance simple PSO’s search in dynamic landscape.In FPSO,a larger main swarm is continuously searching for new peaks and a number of smaller child swarm,divided from main swarm,are used for tracking the achieved peaks over time.Experimental study over a benchmark dynamic problem suggests that the proposed algorithm has much stronger robustness and adaptability in dynamic environments. 相似文献
10.
针对标准粒子群优化算法初期收敛速度快,后期容易陷入早熟收敛,局部寻优,全局搜索能力差等缺点,提出了一种新的鱼群-粒子群优化算法(AF-PSO)。引入拥挤因子δ和马尔可夫链,将鱼群算法加入到粒子群优化算法中,通过计算拥挤因子,来更新速度模型,使其在觅食,聚群,追尾,随机4种模态下进行切换。仿真结果表明了所提出的AF-PSO算法的综合性能优于其他改进的PSO算法。为进一步说明算法的实用性,将AF-PSO算法成功应用于输油管道泄露数据的聚类分析上。实验结果表明基于AF-PSO的K-means算法性能是优于其他聚类算法。 相似文献
11.
在对军事信息服务的含义和特点进行分析的基础上,提出了基于对象Petri网的军事信息服务组合模型建模方法。该方法用位置与令牌的属性信息扩展了组合模型的语义表达能力,用开关控制函数解决了不确定活动的路径选择问题,用服务对象实现了层次化建模能力,改善了基本Petri网模型描述的不足之处。为保证模型的正确合理,还提出了由服务实现的有效性、服务交互的正确性和流程构造的合理性三者结合的模型分析方法。最后针对具体的应用案例,对该方法进行了实例分析。结果表明,该方法能满足军事信息服务组合模型构建的需要,并具备良好的描述与分析能力。 相似文献
12.
近年来,房地产价格持续快速上涨,居民住房问题日益突出,为了缓解中低收入居民住房问题,政府兴建了大批保障性社区.而当前保障性社区公共服务设施普遍存在配置不完善,供给滞后,低效与供给过剩同时存在的问题,导致人口入住过程缓慢,入住率低.这不仅影响到居民的生活质量,同时也影响到保障效果的实现及和谐社会的构建.文章以上海市保障性社区为研究对象,在多目标约束条件下,构建了可以清晰表达保障性社区公共服务设施配置空间的多目标微粒群算法(particle swarm optimization,PSO)优化模型,并基于所构建模型,实证分析保障性社区公共服务设施配置优化模拟,在此基础上求出了公共服务设施最优配置方案,这对于提高保障性社区公共服务设施配置的科学性和合理性,完善社区公共服务设施的配置理论,具有较大的理论意义和实践意义. 相似文献
13.
数据包络分析(data envelopment analysis,DEA)是一种重要的效率评价方法,特别适合复杂系统的评价问题.但由于复杂系统指标体系的复杂性使得DEA方法在评价复杂系统效率问题时也遇到了一些无法回避的困难,主要表现在评价结果过于强调次要指标的作用、常常出现多数单元有效、对投影的要求过于苛刻、指标集成后无法找到针对原始指标的改进信息等.为了解决上述问题,给出了一种用于复杂系统评价的数据包络分析模型,并对相应的DEA有效性含义、模型性质以及模型的求解方法等进行了探讨.通过实例比较可以看出,本文方法不仅具有传统DEA方法的优点,而且还很好地克服了上述缺点. 相似文献
14.
天基预警过程可以看作一种多维离散时间序列监控与预测问题,其调度的决策要素、优化目标和约束条件较多,故往往采用智能优化算法求解该非线性优化问题.而它们在指定时间内却是概率性收敛到Pareto解集.对此,提出基于贝叶斯方法提供多类别决策树挖掘调度中的启发信息,以及引入局部搜索算子等方法提高智能优化算法的快速性和鲁棒性.预警仿真实验表明融入上述方法的免疫克隆选择算法收敛性能提高了10.1%,遗传算法提高了9.8%. 相似文献
15.
基于灵敏度分析的系统可靠性稳健分配优化方法 总被引:1,自引:0,他引:1
在系统可靠性分配中,考虑单元可靠度的不确定性已是可靠性分配的现实需要.为了提高系统可靠性分配优化的质量,将稳健理论引入可靠性分配中,提出基于单元可靠性灵敏度的系统可靠性稳健分配方法.将单元可靠性灵敏度溶入系统可靠性分配模型之中,建立系统可靠性稳健分配模型.在此基础上,采用粒子群-序列二次规划算法对该模型进行优化设计,该混合算法既保持了粒子群算法全局收敛的特点,又补充了序列二次规划法精确求解的能力,因此该混合算法可以快速获取全局最优解.通过对发动机曲柄连杆机构进行可靠性稳健分配设计,验证了可靠性稳健分配模型的合理性和混合算法的寻优能力.对结果分析表明,所提方法可以较好解决单元可靠度不确定时的可靠性分配问题,混合算法具有较强的全局搜索能力,分配优化结果具有较强的稳健性. 相似文献
16.
超密集网络(ultra-dense network, UDN)中,毫微微基站(femto-cell base station, FBS)的密集和随机部署会导致严重的小区间干扰。为了减轻干扰、保障用户服务质量(quality of service, QoS),提出了一种UDN中基于聚类的资源分配方案。首先,设计了一种基于加权密度的改进K-means聚类算法,将FBS动态划分为不同的簇。然后,以最大化UDN系统吞吐量为目标提出了一种两阶段时频资源分配方案:第一阶段,每个聚类内使用贪婪算法执行时频资源块的分配;第二阶段,利用资源补偿分配算法分配剩余的资源块,在考虑用户公平性的同时保证用户QoS。仿真结果表明,本文提出的资源分配方案能够有效提升系统吞吐量,同时保证用户QoS和公平性。 相似文献
17.
基于混沌粒子群优化的系统级故障诊断策略优化 总被引:4,自引:0,他引:4
针对诊断设计优化过程中的关键问题--故障诊断策略优化,提出了基于混沌粒子群优化算法的系统级故障诊断策略优化方法。该算法利用混沌优化不重复遍历系统所有状态的特点,引导粒子在全局范围内搜索,从而克服了粒子群算法“早熟”收敛的缺点。这使算法不仅具有较快的收敛速度,又保证了获得的最优解的可靠性,为获得有效的系统级故障诊断策略提供了可行的方法。最后,给出了该算法在诊断策略优化过程中的关键步骤,通过仿真证明了该算法对于系统级故障诊断策略优化的有效性。 相似文献
18.
指出了并行全局灵敏度方程(global sensitivity equation, GSE)方法的优势,定性分析了并行GSE方法的计算性能。在ModelCenter框架下开发了通用并行GSE驱动组件(general parallel GSE driver, GPGDRV),并与优化算法相结合,基于COM技术开发了通用并行GSE优化器(general parallel GSE optimizer, GPGOPT),进而将并行GSE方法用于耦合系统优化。数值算例表明,GSE方法可以显著提高耦合系统灵敏度的求解效率。将GPGDRV和GPGOPT用于某假想的教练机方案优化设计,并与有限差分法进行计算性能定量比较,定量比较结果与定性分析相符。研究还表明,GSE方法极大地提高了耦合系统优化的效率,使优化时间缩短约76%,并行GSE方法可进一步缩短优化时间。GPGDRV和GPGOPT对于耦合系统的分析和优化具有实用性。 相似文献
19.
This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations among the activities which require some kinds of renewable resources. We predigest the process of sol-ving the resource availability cost problem (RACP) by using start time of each activity to code the schedule. Then, a novel heuris-tic algorithm is proposed to make the process of looking for the best solution efficiently. And then pseudo particle swarm optimiza-tion (PPSO) combined with PSO and path relinking procedure is presented to solve the RACP. Final y, comparative computational experiments are designed and the computational results show that the proposed method is very effective to solve RACP. 相似文献