首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 500 毫秒
1.
为了有效降低模拟集成电路的功耗,提高工艺兼容性,文中提出了一种全CMOS结构的低电压、低功耗基准电压源的设计方法.该方法基于工作在亚阈值区的MOS管,利用PTAT电流源与微功耗运算放大器构成负反馈系统以提高电源电压抑制比.仿真结果表明:在1.0V的电源电压下,输出基准电压为609.mV,温度系数为46×10-6/K,静态工作电流仅为1.23μA;在1.0~5.0V的电源电压变化范围内,电压灵敏度为130μV/V,低频电源电压抑制比为74.0dB.由于使用了无寄生双极型晶体管的全CMOS结构,该电路具有良好的CMOS工艺兼容性.  相似文献   

2.
提出了一种新型的高性能带隙基准电压源,该基准电压源采用共源共栅电流镜提供偏置电流,减少沟道长度调制效应带来的误差,并增加1个简单的减法电路,使得偏置电流更好地跟随电源电压变化,从而提高电路的电源抑制比。整体电路使用CSMC 0.6μm CMOS工艺,采用Hspice进行仿真。仿真结果表明,在-50~ 100℃温度范围内温度系数为2.93×10-5℃,电源抑制比达到-84.2 dB,电源电压在3.5~6.5 V之间均可实现2.5±0.0012 V的输出,是一种有效的基准电压实现方法。  相似文献   

3.
一种新的CMOS带隙基准电压源设计   总被引:2,自引:0,他引:2  
设计了一种新的CMOS带隙基准电压源.通过采用差异电阻间温度系数的不同进行曲率补偿,利用运算放大器进行内部负反馈,设计出结构简单、低温漂、高电源抑制比的CMOS带隙基准电压源.仿真结果表明,在VDD=2 V时,电路具有4.5×10-6V/℃的温度特性和57 dB的直流电源抑制比,整个电路消耗电源电流仅为13μA.  相似文献   

4.
基于Ahujia基准电压发生器设计了低功耗、高电源抑制比CMOS基准电压发生器电路.其设计特点是采用了共源共栅电流镜,运放的输出作为驱动的同时还作为自身的偏置电路;其次是采用了带隙温度补偿技术.使用CSMC标准0.6μm双层多晶硅n-well CMOS工艺混频信号模型,利用Cadence的Spectre工具对其仿真,结果显示,当温度和电源电压变化范围为-50-150℃和4.5-5.5 V时,输出基准电压变化小于1.6 mV(6.2×10-6/℃)和0.13 mV;低频电源抑制比达到75 dB.电路在5 V电源电压下工作电流小于10 μA.该电路适用于对功耗要求低、稳定度要求高的集成温度传感器电路中.  相似文献   

5.
提出了一种新颖的利用负反馈环路以及RC滤波器提高电源抑制比的高精密CMOS带隙基准电压源.采用上海贝岭的1.2μm BiCMOS工艺进行设计和仿真,spectre模拟表明该电路具有较高的精度和稳定性,带隙基准的输出电压为1.254V,在2.7V-5.5V电源电压范围内基准随输人电压的最大偏移为0.012mV,基准的最大静态电流约为11.27μA;当温度-40℃-120℃范围内,基准温度系数为1mV;在电源电压为3.6V时,基准的总电流约为10.6μA,功耗约为38.16μW;并且基准在低频时具有100dB以上的电源电压抑制比(PSRR),基准的输出启动时间约为39μs.  相似文献   

6.
设计了一种基于CMOS工艺的带隙基准电压源。该基准电压源采用MOS管电流镜技术补偿其输出电压所经过的三极管的基极电流,采用共源共栅电流源作为负载,具有结构简单、低温漂、高电源抑制比特性。仿真结果表明,在VDD=5 V时,该电路具有6.5×10-6V/℃的温度特性和52 dB的电源抑制比。经流片测试,其性能良好,已应用到光通信用跨阻放大器中。  相似文献   

7.
低温度系数高电源抑制比带隙基准源的设计   总被引:1,自引:0,他引:1  
基于SMIC 0.18 μm CMOS工艺,设计了一种适用于数模或模数转换等模数混合电路的低温度系数、高电源抑制比的带隙基准电压源.针对传统带隙基准源工作电压的限制,设计采用电流模结构使之可工作于低电源电压,且输出基准电压可调;采用共源共栅结构(cascode)作电流源,提高电路的电源抑制比(PSRR);采用了具有高增益高输出摆幅的常见的两级运放.Cadence仿真结果表明:在1.8V电源电压下,输出基准电压约为534 mV,温度在-25~100℃范围内变化时,温度系数为4.8 ppm/℃,低频电源抑制比为-84 dB,在1.6~2.0 V电源电压变化范围内,电压调整率为0.15 mV/V.  相似文献   

8.
为获得一个稳定而精确的基准电压,提出了一种适用于低电源电压下高阶曲率补偿的电流模式带隙基准源电路,通过在传统带隙基准源结构上增加一个电流支路,实现了高阶曲率补偿。该电路采用Chartered 0.35μm CMOS工艺,经过Spectre仿真验证,输出电压为800mV,在-40~85℃温度范围内温度系数达到3×10^-6℃^-1,电源抑制比在10kHz频率时可达-60dB,在较低电源电压为1.7V时电路可以正常启动,补偿改进后的电路性能较传统结构有很大提高.  相似文献   

9.
围绕降低温漂、提高电源抑制比的目标,设计一种带有分段曲率补偿并且具有较好的电源抑制比性能的带隙基准电路.设计带隙基准电路,优化传统的电流求和结构,采用共源共栅结构作为电流源以提高电源抑制比.设计温度补偿电路,改善带隙基准的温度系数.设计采用SMIC 0.18μm CMOS工艺,1.8 V电压供电,输出的基准电压为900 mV,在温度为-45 125℃范围内,仿真显示,温度系数为2.3×10~(-6)/℃,在低频时电源抑制比可以达到-86 dB,电路性能参数满足预期要求.  相似文献   

10.
提出一种新型基准电压源,通过低阈值源跟随电路和新颖的启动电路实现输出的低压高精度.低阈值源跟随电路通过降低运放的输出阻抗减少系统增益,减少运放失调对输出电压精度的影响,同时低阈值耗尽型管的采用,降低了电源电压和基准电压间的压差,使得该结构可工作于低压系统中;启动电路通过实时监测基准输出电压,加速启动速度的同时消除输出电压过冲现象.该基准电压源已应用于一款线性稳压电源(Low dropout voltage regulator,LDO)中,并基于标准0.35μm CMOS工艺用Cadence的Spectre工具进行仿真验证.仿真结果表明:输出电压启动过程平缓无上冲,基准电压稳定输出为1.215 V@VCC≥1.5 V,静态电流为9 uA@6 V;在-40℃~100℃下,温度系数为26 ppm/℃,电源电压抑制比为85 dB@1 kHz;在电源电压为3 V~6 V下,线性调整率为4.57 ppm/V.  相似文献   

11.
设计了一个低电源电压的高精密的CMOS带隙电压基准源,采用SMIC 0.18μm CMOS工艺。实现了一阶温度补偿,具有良好的电源抑制比。测试结果表明,在1.5 V电源电压下,电源抑制比为47 dB,在0~80℃的温度范围内,输出电压变化率为0.269%,功耗为0.22 mW,芯片核面积为0.057 mm2。  相似文献   

12.
利用有源PMOS负载反相器组成电压减法器,将电源噪声引入运放反馈,得到了一种高电源抑制比的基准电压源。对基准源的低频电源噪声抑制进行了推导和分析。仿真结果表明,在3 V电源电压下,在-40~85℃范围内,温度系数低于1.976 ppm/℃;在27℃下,1 KHz时,电源抑制比达88 dB.  相似文献   

13.
介绍了一种基于CSMC 0.5-μm 2P3M n-阱混合信号CMOS工艺的高阶温度补偿的带隙参考源。该CMOS带隙参考源利用了Buck电压转换单元和与温度无关的电流,提供了一种对基极-发射极电压V_BE的高阶温度补偿。它还采用共源共栅结构以提高电源抑制比。在5V电源电压下,温度变化范围为-20~100℃时,该带隙参考源的温度系数为5.6ppm/℃。当电源电压变化范围为4~6V时,带隙参考源输出电压的变化为0.4mV。  相似文献   

14.
为消除运算放大器失调电压对带隙电压精度的影响,采用NPN型三极管产生ΔVbe,并设计全新的反馈环路结构产生了低压带隙电压.电路采用SMIC 0.18μm CMOS工艺实现,该新型低压带隙基准源设计输出电压为0.5V,温度系数为8ppm/℃,电源抑制比达到-130dB,并成功运用于16位高速ADC芯片中.  相似文献   

15.
提出一种新型的芯片内基准电压源的设计方案,基准电压源是当代数模混合集成电路以及射频集成电路中极为重要的组成部分。为满足大规模低压CMOS集成电路中高精度比较器、数模转换器、高灵敏RF等电路对基准电压源的苛刻需要,芯片内部基准电压源大部分采用基准带隙电压源。研究并设计了一种低功耗、超低温度系数和较高的电源抑制比的高性能低压CMOS带隙基准电压源。其综合了一级温度补偿、电流反馈技术、偏置电路温度补偿技术、RC相位裕度补偿技术。该电路采用台积电(TSMC)0.18μm工艺,并利用Specture进行仿真,仿真结果表明了该设计方案的合理性以及可行性,适用于在低电压下电源抑制比较高的低功耗领域应用。  相似文献   

16.
采用分段曲率补偿的新型带隙基准电压源设计   总被引:1,自引:0,他引:1  
宗永玲  陈中良 《河南科学》2014,(8):1467-1469
设计了一种利用MOS晶体管产生正负温度系数电流的新型带隙基准电压源,并采用分段曲率补偿技术,从而降低基准电压的温度系数,同时增加工作温度范围.该电路使用TSMC 0.6 um标准CMOS工艺进行设计,Spectre仿真结果表明,电源电压为1.5 V,温度范围为-15~95℃时,温度系数为107 ppm/℃,采用分段曲率补偿后,温度系数降为4.28 ppm/℃.  相似文献   

17.
采用CSMC 0.35μm工艺,通过在电源和带隙基准源电路间插入电流源缓冲级的方法,设计提高带隙基准源电源噪声抑制能力的带隙基准源.在最低工作电压不变的情况下,所设计的带隙基准电源大幅度提高了电路的电源抑制比,且功耗低.仿真结果表明:电源抑制比值为110dB/40dB,Iq=12μA,Vmin=2.4V,可作为模拟IP(知识产权)且易集成于单片系统中.  相似文献   

18.
针对传统CMOS电流乘除法器存在线性度不高、工作频率低等缺点,提出一种以平方根电路、平方/除法器电路为核心的基于MOS管跨导线性原理的新型高频高线性CMOS电流模乘/除法器。在TSMC0.35μm CMOS集成工艺下进行HSPICE仿真测试表明:该电路在3V电源电压下,-3dB带宽可达到35.1MHz,电源静态功耗为202.68μW,输出电流为0~25.1μA,非线性误差为0.85%,总谐波失真为0.14%。本文提出的乘除法器电路与Tanno、Lopez等提出的基于跨导线性原理的乘除法器电路相比,优点在于-3dB带宽提高了,功耗降低了,电源电压降低了,线性度提高了,精度提高了,并且采用了相对更先进的0.35μmCMOS工艺,可缩小芯片面积,节约成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号