首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotes, binding of the six-subunit origin recognition complex (ORC) to DNA provides an interactive platform for the sequential assembly of pre-replicative complexes. This process licenses replication origins competent for the subsequent initiation step. Here, we analyze the contribution of human Orc6, the smallest subunit of ORC, to DNA binding and pre-replicative complex formation. We show that Orc6 not only interacts with Orc1–Orc5 but also with the initiation factor Cdc6. Biochemical and imaging experiments reveal that this interaction is required for licensing DNA replication competent. Furthermore, we demonstrate that Orc6 contributes to the interaction of ORC with the chaperone protein HMGA1a (high mobility group protein A1a). Binding of human ORC to replication origins is not specified at the level of DNA sequence and the functional organization of origins is poorly understood. We have identified HMGA1a as one factor that might direct ORC to AT-rich heterochromatic regions. The systematic analysis of the interaction between ORC and HMGA1a revealed that Orc6 interacts with the acidic C-terminus of HMGA1a and also with its AT-hooks. Both domains support autonomous replication if targeted to DNA templates. As such, Orc6 functions at different stages of the replication initiation process. Orc6 can interact with ORC chaperone proteins such as HMGA1a to facilitate chromatin binding of ORC and is also an essential factor for pre-RC formation.  相似文献   

2.
Laminin and nidogen (entactin) are major glycoprotein components of basement membranes. At least seven different isoforms of laminin have been identified. Laminin and nidogen form high affinity complexes in basement membranes by specific binding between the laminin γ1 chain and the G3 globule of nidogen. Additional interactions between nidogen and collagen IV, perlecan and other basement membrane components result in the formation of ternary complexes between these matrix components. Nidogen is highly susceptible to proteolytic cleavage, and binding to laminin protects nidogen from degradation. Nidogen is considered to have a crucial role as a link protein in the assembly of basement membranes. Basement membrane components are synthesized at high levels during tissue growth and development, and sites of morphogenesis correlate with localized remodelling of basement membranes. The formation of distinct basement membrane matrices in the developing embryo is influenced by the laminin isoforms produced and by whether laminin and nidogen are co-expressed and secreted as a complex or are produced by cooperation between two cell layers. The potential roles of laminin-nidogen complexes, cell-matrix interactions, and other intermolecular interactions within the matrix in basement membrane assembly and stability are discussed in this review.  相似文献   

3.
Alcohols affect a wide array of biological processes including protein folding, neurotransmission and immune responses. It is becoming clear that many of these effects are mediated by direct binding to proteins such as neurotransmitter receptors and signaling molecules. This review summarizes the unique chemical properties of alcohols which contribute to their biological effects. It is concluded that alcohols act mainly as hydrogen bond donors whose binding to the polypeptide chain is stabilized by hydrophobic interactions. The electronegativity of the O atom may also play a role in stabilizing contacts with the protein. Properties of alcohol binding sites have been derived from X-ray crystal structures of alcohol-protein complexes and from mutagenesis studies of ion channels and enzymes that bind alcohols. Common amino acid sequences and structural features are shared among the protein segments that are involved in alcohol binding. The alcohol binding site is thought to consist of a hydrogen bond acceptor in a turn or loop region that is often situated at the N-terminal end of an alpha-helix. The methylene chain of the alcohol molecule appears to be accommodated by a hydrophobic groove formed by two or more structural elements, frequently a turn and an alpha-helix. Binding at these sites may alter the local protein structure or displace bound solvent molecules and perturb the function of key proteins.  相似文献   

4.
This review explores various aspects of the interaction between microtubule targeting agents and tubulin, including binding site, affinity, and drug resistance. Starting with the basics of tubulin polymerization and microtubule targeting agent binding, we then highlight how the three-dimensional structures of drug–tubulin complexes obtained on stabilized tubulin are seeded by precise biological and biophysical data. New avenues opened by thermodynamics analysis, high throughput screening, and proteomics for the molecular pharmacology of these drugs are presented. The amount of data generated by biophysical, proteomic and cellular techniques shed more light onto the microtubule–tubulin equilibrium and tubulin–drug interaction. Combining these approaches provides new insight into the mechanism of action of known microtubule interacting agents and rapid in-depth characterization of next generation molecules targeting the interaction between microtubules and associated modulators of their dynamics. This will facilitate the design of improved and/or alternative chemotherapies targeting the microtubule cytoskeleton.  相似文献   

5.
Complexing agents from microorganisms   总被引:2,自引:0,他引:2  
Summary The majority of extracellular complexing ligands produced by microorganisms are summarized as being of low molecular mass (<10,000 daltons) and are usually released as part of metal detoxification processes. These exudates appear to exhibit strong metal-binding characteristics, often reducing metal toxicity. Under certain conditions microbes produce metal-specific compounds of low molecular mass called siderophores; although these are normally specific for iron they also have relatively high affinities for radionuclides such as Pu and facilitate their uptake into cells. The occurrence of specific actinide complexing agents has been recorded.The breakdown of lignins and cellulosic material produces large macromolecular compounds called humates. These contain multiligand sites and display a wide range of complexing abilities. They form both soluble and insoluble complexes with toxic elements with various results. Humates also considerably influence adsorption of metals to substrate surfaces and at high pH may compete with OH-ions for metal binding.As well as with extracellular ligands, metals can interact directly with microorganisms by accumulation in subcellular compartments or by adsorption on bacterial surfaces.  相似文献   

6.
Snake venom contains mixture of bioactive proteins and polypeptides. Most of these proteins and polypeptides exist as monomers, but some of them form complexes in the venom. These complexes exhibit much higher levels of pharmacological activity compared to individual components and play an important role in pathophysiological effects during envenomation. They are formed through covalent and/or non-covalent interactions. The subunits of the complexes are either identical (homodimers) or dissimilar (heterodimers; in some cases subunits belong to different families of proteins). The formation of complexes, at times, eliminates the non-specific binding and enhances the binding to the target molecule. On several occasions, it also leads to recognition of new targets as protein-protein interaction in complexes exposes the critical amino acid residues buried in the monomers. Here, we describe the structure and function of various protein complexes of snake venoms and their role in snake venom toxicity.  相似文献   

7.
Summary For the initiation of an epidemic with a tendency to become wide-spread, various conditions must be fulfilled in the vegetable kingdom. Factors which can lead to such an epidemic are the same as in epidemic diseases in humans and concern the host, causative agents and environmental factors.  相似文献   

8.
9.
Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.  相似文献   

10.
The tetramer of ethylenesulfonic acid (U-9843) is a potent inhibitor of HIV-1 RT* and possesses excellent antiviral activity at nontoxic doses in HIV-1 infected lymphocytes grown in tissue culture. Kinetic studies of the HIV-1 RT-catalyzed RNA-directed DNA polymerase activity were carried out in order to determine if the inhibitor interacts with the template: primer or the deoxyribonucleotide triphosphate (dNTP) binding sites of the polymerase. Michaelis-Menten kinetics, which are based on the establishment of a rapid equilibrium between the enzyme and its substrates, proved inadequate for the analysis of the experimental data. The data were thus analyzed using steady-state Briggs-Haldane kinetics assuming that the template:primer binds to the enzyme first, followed by the binding of the dNTP and that the polymerase is a processive enzyme. Based on these assumptions, a velocity equation was derived which allows the calculation of all the specific forward and backward rate constants for the reactions occurring between the enzyme, its substrates and the inhibitor. The calculated rate constants are in agreement with this model and the results indicated that U-9843 acts as a noncompetitive inhibitor with respect to both the template:primer and dNTP binding sites. Hence, U-9843 exhibits the same binding affinity for the free enzyme as for the enzyme-substrate complexes and must inhibit the RT polymerase by interacting with a site distinct from the substrate binding sites. Thus, U-9843 appears to impair an event occurring after the formation of the enzyme-substrate complexes, which involves either an event leading up to the formation of the phosphoester bond, the formation of the ester bond itself or translocation of the enzyme relative to its template:primer following the formation of the ester bond.  相似文献   

11.
Biotherapeutics have revolutionized modern medicine by providing medicines that would not have been possible with small molecules. With respect to cancer therapies, this represents the current sector of the pharmaceutical industry having the largest therapeutic impact, as exemplified by the development of recombinant antibodies and cell-based therapies. In cancer, one of the most common regulatory alterations is the perturbation of translational control. Among these, changes in eukaryotic initiation factor 4F (eIF4F) are associated with tumor initiation, progression, and drug resistance in a number of settings. This, coupled with the fact that systemic suppression of eIF4F appears well tolerated, indicates that therapeutic agents targeting eIF4F hold much therapeutic potential. Here, we discuss opportunities offered by biologicals for this purpose.  相似文献   

12.
13.
The assembly of the protein synthesis machinery occurs during translation initiation. In bacteria, this process involves the binding of messenger RNA(mRNA) start site and fMet-tRNAfMet to the ribosome, which results in the formation of the first codon-anticodon interaction and sets the reading frame for the decoding of the mRNA. This interaction takes place in the peptidyl site of the 30S ribosomal subunit and is controlled by the initiation factors IF1, IF2 and IF3 to form the 30S initiation complex. The binding of the 50S subunit and the ejection of the IFs mark the irreversible transition to the elongation phase. Visualization of these ligands on the ribosome has been achieved by cryo-electron microscopy and X-ray crystallography studies, which has helped to understand the mechanism of translation initiation at the molecular level. Conformational changes associated with different functional states provide a dynamic view of the initiation process and of its regulation. Received 16 July 2008; received after revision 31 August 2008; accepted 10 September 2008 A. Simonetti, S. Marzid: These authors contributed equally to this work.  相似文献   

14.
In plants, RNA editing is a process for converting a specific nucleotide of RNA from C to U and less frequently from U to C in mitochondria and plastids. To specify the site of editing, the cis-element adjacent to the editing site functions as a binding site for the trans-acting factor. Genetic approaches using Arabidopsis thaliana have clarified that a member of the protein family with pentatricopeptide repeat (PPR) motifs is essential for RNA editing to generate a translational initiation codon of the chloroplast ndhD gene. The PPR motif is a highly degenerate unit of 35 amino acids and appears as tandem repeats in proteins that are involved in RNA maturation steps in mitochondria and plastids. The Arabidopsis genome encodes approximately 450 members of the PPR family, some of which possibly function as trans-acting factors binding the cis-elements of the RNA editing sites to facilitate access of an unidentified RNA editing enzyme. Based on this breakthrough in the research on plant RNA editing, I would like to discuss the possible steps of co-evolution of RNA editing events and PPR proteins. Received 30 September 2005; received after revision 5 November 2005; accepted 28 November 2005  相似文献   

15.
Using a C1q binding test, immune complexes have been detected in one half of cerebrospinal fluid samples from patients with multiple sclerosis. These results provide additional evidence for the participation of an immune reaction in the disease process.  相似文献   

16.
Summary Using a C 1q binding test, immune complexes have been detected in one half of cerebrospinal fluid samples from patients with multiple sclerosis. These results provide additional evidence for the participation of an immune reaction in the disease process.  相似文献   

17.
18.
Anti-DNA antibodies: aspects of structure and pathogenicity   总被引:4,自引:0,他引:4  
Anti-DNA antibodies contribute to the pathology of systemic lupus erythematosus. Their depositon in tissue lesions could result from localization of preformed immune complexes of antibodies with DNA or nucleosomes, or from cross-reaction of anti-DNA antibodies directly with tissue proteins. Structural analyses contribute to understanding their pathogenic potential. Primary structures of lupus immunoglobulin G double-stranded DNA-binding autoantibodies are determined by immunoglobulin genes with mutated variable region segments, indicative of selection by immunizing antigen. Arginine, lysine and asparagine residues in complementarity-determining region favor DNA binding. Heavy-chain variable regions make major contributions to DNA binding; affinity and specificity of binding are modulated or can be abrogated by the light-chain variable domain. Crytallographic structure is known for a few antibody-DNA complexes and several ligand-free Fab fragments. Computer modeling supplements this limited information. Structural information of lupus antibody interactions with both DNA and cross-reacting molecules will support use of ligands to inhibit tissue deposition of the antibodies and prevent lesion formation in lupus. Received 4 July 2002; accepted 23 July 2002 RID="*" ID="*"Corresponding author.  相似文献   

19.
20.
Intrinsically disordered proteins (IDPs) do not, by themselves, fold into a compact globular structure. They are extremely dynamic and flexible, and are typically involved in signalling and transduction of information through binding to other macromolecules. The reason for their existence may lie in their malleability, which enables them to bind several different partners with high specificity. In addition, their interactions with other macromolecules can be regulated by a variable amount of chemically diverse post-translational modifications. Four kinetically and energetically different types of complexes between an IDP and another macromolecule are reviewed: (1) simple two-state binding involving a single binding site, (2) avidity, (3) allovalency and (4) fuzzy binding; the last three involving more than one site. Finally, a qualitative definition of fuzzy binding is suggested, examples are provided, and its distinction to allovalency and avidity is highlighted and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号