首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GaN nanowires were successfully prepared on Si(111) substrate through ammoniating Ga203/BN films deposited by radio frequency magnetron sputtering system. The synthesized nanowires were confirmed as hexagonal wurtzite GaN by X-ray diffraction, selected-area electron diffraction and Fourier transform infrared spectra. Scanning electron microscopy and transmission electron microscopy revealed that the grown GaN nanowires have a smooth and clean surface with diameters ranging from 40 to 160 nm and lengths typically up to several tens of micrometers. The representative photoluminescence spectrum at room temperature exhibited a strong UV light emission band centered at 363 nm and a relative weak purple light emission peak at 422 nm. The growth mechanism is discussed briefly.  相似文献   

2.
1 Results In this contribution we present the synthesis and characterization of novel copolymers based on fluorene and thiophene (see Scheme 1).They were synthesized by the Pd-catalyzed Suzuki coupling reaction of 9,9-dihexylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester and 3-substituted (R=3-methylbutyl,hexyl,2-(pyren-1-yl)vinyl) 2,5-dibromothiophenes and characterized by GPC,IR and NMR techniques.UV-vis absorption,photoluminescence (PL) and electrochemical behavior of these polymers were also studied.Though a similar absorption was observed in solutions and thin films of the polymers,the maximum at 400 nm for FIPT and F3HT and at 390 nm FPyT,PL of FPyT thin film differs from those of FIPT and F3HT thin films.They exhibited an intense green PL emission,whereas PL emission of FPyT thin film was orange with a red-shifted maximum compared with FIPT and F3HT indicating pronounced aggregation of FPyT in the solid state.Cyclic voltammetry showed that all the polymers are reversibly oxidized and reduced.A similar electrochemical behavior was observed for FIPT and F3HT whereas a higher electron affinity was estimated for FPyT.  相似文献   

3.
A single host white emitting phosphor, CaLaGa3O7:Dy3+, was synthesized by chemical co-precipitation. Field emission scanning electron microscopy, X-ray diffraction, laser particle size analysis, and photoluminescence and cathodoluminescence spectra were used to investigate the structural and optical properties of the phosphor. The phosphor particles were composed of microspheres with a slight tendency to agglomerate, and an average diameter was of about 1.0 μm. The Dy3+ ions acted as luminescent centers, and substituted La3+ ions in the single crystal lattice of CaLaGa3O7 where they were located in Cs sites. Under excitation with ultraviolet light and a low voltage electron beam, the CaLaGa3O7:Dy3+ phosphor exhibited the characteristic emission of Dy3+ (4F9/2-6H15/2 and 4F9/2-6H13/2 transitions) with intense yellow emission at about 573 nm. The chromaticity coordinates for the phosphor were in the white region. The relevant luminescence mechanisms of the phosphor are investigated. This phosphor may be applied in both field emission displays and white light-emitting diodes.  相似文献   

4.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

5.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid(chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm.Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of(27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures(LIPSSs), which were the high spatial frequency LIPSSs(HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

6.
Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1:1 at various IR irradiation temperatures T1 (from room temperature to 400 ℃ ). The refractive index, deposited ratio, and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T are amorphous at the temperature ranging from 1, the crystalline seeds appear at T1 = 300℃, and the films 27 ℃ to 400 ℃.  相似文献   

7.
The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114 A aluminum alloy substrates were investigated by optical microscopy(OM) and scanning electron microscopy(SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10–20 nm and 5–10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114 A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.  相似文献   

8.
Mgx Zn1–x O thin films with x = 0, 0.11, 0.28, 0.44, 0.51, and 0.65 were grown by plasma-assisted molecular beam epitaxy on (0001) sapphire substrates. X-ray diffraction measurement reveals that phase separation of the Mgx Zn1–x O films occurred at x =0.44 and 0.51. Optical absorption spectra show that the absorption edges of the films shift to high-energy side with increasing Mg contents. In resonant Raman spectra, multiple-order Raman peaks originating from ZnO-like longitudinal optical phonons were obser...  相似文献   

9.
Eu3+ions embedded in silica thin films codoped with SnO2 nanocrystals were fabricated by sol–gel and spin-coating methods.SnO2 nanocrystals with controllable sizes were synthesized through precisely controlling the Sn concentrations.The influences of doping and annealing conditions on the photoluminescence intensity from SnO2 nanocrystals are systematically investigated.The effective energy transfer from the defect states of SnO2nanocrystals to nearby Eu3+ions has revealed by the selective photoluminescence excitation spectra.The efficiency of the Forster resonance energy transfer is evaluated by the time-resolved photoluminescence measurements,which is about 29.1%based on the lifetime tests of the SnO2emission.  相似文献   

10.
Undoped and Eu 3+-doped Sr 2 Mg 1-x Zn x Si 2 O 7 (0≤x≤1) powder crystals were obtained by conventional solid-state reaction.X-ray diffraction,inductively coupled plasma analysis,and Fourier transform infrared spectroscopy results implied that a complete solid-solution formed between Sr 2 MgSi 2 O 7 and Sr 2 ZnSi 2 O 7 as well as local structural adjustment.Excitation spectra exhibited O 2-Eu 3+ charge transfer (CT) bands centered at 250 nm for Sr 2 MgSi 2 O 7:Eu 3+ and 258 nm for Sr 2 ZnSi 2 O 7:Eu 3+.Emission spectra exhibited a major band around 616 nm,which showed the environment around Eu 3+ was non-centrosymmetric in both Sr 2 MgSi 2 O 7:Eu 3+ and Sr 2 ZnSi 2 O 7:Eu 3+.In addition,first principles calculations within the local density approximation (LDA) of density functional theory (DFT) were used to calculate the electronic structure of Sr 2 MgSi 2 O 7 and Sr 2 ZnSi 2 O 7.Calculated results were correlated with experimental UV-vis reflection spectra and the observed shift of the O 2-Eu 3+ CT band.  相似文献   

11.
In situ(α-Al_2O_3+ZrB_2)/Al composites with network distribution were fabricated using low-energy ball milling and reaction hot pressing. Differential thermal analysis(DTA) was used to study the reaction mechanisms in the Al–Zr O2–B system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) in conjunction with energy-dispersive X-ray spectroscopy(EDX) were used to investigate the composite phases, morphology, and microstructure of the composites. The effect of matrix network size on the microstructure and mechanical properties was investigated. The results show that the optimum sintering parameters to complete reactions in the Al–Zr O2–B system are 850°C and 60 min. In situ-synthesized α-Al2O3 and Zr B2 particles are dispersed uniformly around Al particles, forming a network microstructure; the diameters of the α-Al2O3 and Zr B2 particles are approximately 1–3 μm. When the size of Al powder increases from 60–110 μm to 150–300 μm, the overall surface contact between Al powders and reactants decreases, thereby increasing the local volume fraction of reinforcements from 12% to 21%. This increase of the local volume leads to a significant increase in microhardness of the in situ(α-Al2O3–Zr B2)/Al composites from Hv 163 to Hv 251.  相似文献   

12.
Surface plasmon polariton(SPP) is electro-magnetic wave coupled to free electron oscillations near the surface of metal, and has been used to improve the photoelectric properties in many optoelectronic devices. In the present study, the Au nanoparticles(NPs)/β-Ga_2O_3 composite thin film was fabricated through depositing Au ultra-thin film on the β-Ga_2O_3 thin film followed by post-thermal treatment. Compared to bare β-Ga_2O_3 thin film, a significant absorption around 510 nm, which is attributed to SPP of Au NPs, was observed in the UV–vis spectrum of Au NPs/β-Ga_2O_3 composite thin film. The results showed that the photoresponse of Au NPs/Ga_2O_3 photodetector illuminated under 254 nm +532 nm light was much higher than that illuminated under 254 nm light, indicating an enhancement of photoelectric property for the solar-blind photodetector based on β-Ga_2O_3 thin film.  相似文献   

13.
Colloidal indium-doped zinc oxide(IZO) and tin-doped zinc oxide(ZTO) nanoparticles were successfully prepared in organic solution,with metal acetylacetonate as the precursor and oleylamine as the solvent. The crystal and optical properties were characterized by X-ray diffraction,UV?visible spectrophotometry,and fluorescence spectroscopy,respectively; the surface and structure morphologies were observed by scanning electron microscopy and transmission electron microscopy. The XRD patterns of the IZO and ZTO nanoparticles all exhibited similar diffraction peaks consistent with the standard XRD pattern of Zn O,although the diffraction peaks of the IZO and ZTO nanoparticles were slightly shifted with increasing dopant concentration. With increasing dopant concentration,the fluorescent emission peaks of the IZO nanoparticles exhibited an obvious red shift because of the difference in atomic radii of indium and zinc,whereas those of the ZTO nanoparticles exhibited almost no shift because of the similarity in atomic radii of tin and zinc. Furthermore,the sizes of the IZO and ZTO nanoparticles distributed in the ranges 20–40 and 20–25 nm,respectively,which is attributed to the difference in ionic radii of indium and tin.  相似文献   

14.
SnO2/ graphite nanocomposites with different SnO2 contents were successfully prepared by a co-precipitation method.The nanocomposites, used as the anode material for lithium-ion batteries( LIBs),were characterized by X-ray diffraction( XRD),thermogravimetric analysis( TGA), and transmission electron microscopy( TEM). The SnO2 particles had the average size of about 15 nm and their distribution on graphite matrix much depended on the contents of SnO2 in the nanocomposites. The galvanostatic charge-discharge cycles were used to investigate the effects of SnO2 contents on the electrochemical performance of these composites. The results show that the initial specific capacities increase with the SnO2 contents. However,the cyclic stabilities are determined by the distribution of SnO2 particles in composites. For55% by weight SnO2/ graphite composites, the initial specific capacity is 740 m Ah g- 1and 70% of the initial specific capacity( 518 m Ah·g- 1) can still be retained after 50 charge-discharge cycles.  相似文献   

15.
The Eu, Tb co-doped SiO2 matrix tricolor fluorescence system was prepared by sol-gel technique. Red emission at 618 nm, green emission at 543 nm and blue emission at 350-500 nm were observed in the PL spectra of the sample, indicating that Eu^3+, Eu^2+ and Tb^3+ ions coexisted in the matrix. In the co-doped sample, the blue emission of Eu^2+ was much stronger than that of the sample single doped with Eu, which implied that the electron transfer between Eu^3+ and Tb^3+ maybe happened in the SiO2 matrix. The influences of the annealing temperature and Tb concentration on the PL spectra of the samples were investigated. The optimal doped concentration of Tb was determined to be 0.2% and the optimal annealing temperature 850℃. Annealed at 600℃, Tb^3+ had a sensitizing effect on Eu^3+ in the SiO2 matrix, and the emission intensity of Eu^3+ in the Eu, Tb co-doped sample was more than four times that of the single doped sample, which could be attributed to the energy transfer from Tb^3+ to Eu^3+.  相似文献   

16.
A chemical precipitation–thermal decomposition method was developed to synthesize Co_3O_4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co~(2+), and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co_3O_4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co_3O_4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30℃, 0.25 mol/L Co~(2+), and a calcination temperature of 350℃, was 48.89 m~2/g. Electrodes fabricated using Co_3O_4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.  相似文献   

17.
《矿物冶金与材料学报》2021,28(12):1983-1990
Radioluminescence (RL) behaviour of erbium-doped yttria nanoparticles (Y2O3:Er3+ NPs) which were produced by sol–gel method was reported for future scintillator applications. NPs with dopant rates of 1at%, 5at%, 10at% and 20at% Er were produced and calcined at 800°C, and effect of increased calcination temperature (1100°C) on the RL behaviour was also reported. X-ray diffraction (XRD) results showed that all phosphors had the cubic Y2O3 bixbyite-type structure. The lattice parameters, crystallite sizes (CS), and lattice strain values were calculated by Cohen-Wagner (C-W) and Williamson-Hall (W-H) methods, respectively. Additionally, the optimum solubility value of the Er3+ dopant ion in the Y2O3 host lattice was calculated to be approximately 4at% according to Vegard’s law, which was experimentally obtained from the 5at% Er3+ ion containing solution. Both peak shifts in XRD patterns and X-ray photoelectron spectroscopy (XPS) analyses confirmed that Er3+ dopant ions were successfully incorporated into the Y2O3 host structure. High-resolution transmission electron microscopy (HRTEM) results verified the average CS values and agglomerated NPs morphologies were revealed. Scanning electron microscopy (SEM) results showed the neck formation between the particles due to increased calcination temperature. As a result of the RL measurements under a Cu Kα X-ray radiation (wavelength, λ = 0.154 nm) source with 50 kV and 10 mA beam current, it was determined that the highest RL emission belonged to 5at% Er doped sample. In the RL emission spectrum, the emission peaks were observed in the wavelength ranges of 510–575 nm (2H11/2, 4S3/2–4I15/2; green emission) and 645–690 nm (4F9/2–4I15/2; red emission). The emission peaks at 581, 583, 587, 593, 601, 611 and 632 nm wavelengths were also detected. It was found that both dopant rate and calcination temperature affected the RL emission intensity. The color shifted from red to green with increasing calcination temperature which was attributed to the increased crystallinity and reduced crystal defects.  相似文献   

18.
The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25℃ and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.  相似文献   

19.
1 Results An inverse spinel LiCoVO4 cathode material was synthesized by a citric acid-urea polymeric method, calcined at 773 K for 5 h. The synthesized LiCoVO4 sample was surface modified with various wt.% of La2O3 by a polymeric process, calcined at 873 K for 2 h. The samples were characterized by XRD, FTIR, SEM, and TEM techniques. XRD patterns exposed that single-phase crystallinity occurred when they were heated at 773 K for 5 h in air. For the La2O3 coated samples, there was no evident signal corresponding to secondary phase peaks. FTIR spectra showed that organic residues and nitrates were completely eliminated and pure LiCoVO4 formed at 773 K. SEM micrographs showed the morphology at different stages for the polymeric intermediates. TEM images of LiCoVO4 revealed that the nanosized particles ranged from ≈90 nm and La2O3 coated on the fine particles was compact with an average thickness of ≈15 nm (Fig. 1). The charge-discharge studies indicated that the 0.5 wt.% La2O3 coated sample had the best electrochemical performance with an initial charge capacity of 60 mAh·g-1at 3.0-4.5 V and capacity retention of 71% for 20 cycles, whereas after the 20th cycle, about 94% capacity was retained for 110 cycles (Fig. 2). The dQ/dV vs. voltage plots revealed that the impedance growth was slower for the surface modified LiCoVO4 cathode material.  相似文献   

20.
Er-Tm codoped amorphous aluminum oxide (a-Al2O3) thin films have been prepared by an alternative pulsed laser deposition. The phase structure and the surface of the deposited thin films were characterized by the X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Effective photoluminescence (PL) in the region of 350-900 nm was observed when pumped at 325 nm, and the PL performance has been improved by modifying the Tm^3+ concentration. With the increasing of [Tm]/[Er] concentration ratio, the intensity of emission of 382 nm and 500 nm bands was improved effectively while that of 765 nm band increased smoothly. Our results suggest that the resonant energy transfer and cross relaxation between Tm^3+ and Er^3+ play an important role in the evolution of the luminescent response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号