首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction of hematite pellets using H2–CO mixtures with a wide range of H2/CO by molar(1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures(1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2–CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.  相似文献   

2.
Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%–10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.  相似文献   

3.
To investigate the flow of primary slag bearing TiO_2 in the cohesive zone of blast furnaces,experiments were carried out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing Fe O content and increasing TiO_2 content. The slag holdup decreases when the Fe O content is in the range of 5wt%–10wt%,whereas it increases when the Fe O content exceeds 10wt%. Meanwhile,the slag holdup decreases when the TiO_2 content increases from 5wt% to 10wt% but increases when the TiO_2 content exceeds 10wt%. Moreover,slag/coke interface analysis shows that the reaction between Fe O and TiO_2 occurs between the slag and the coke. The slag/coke interface is divided into three layers: slag layer,iron-rich layer,and coke layer. TiO_2 in the slag is reduced by carbon,and the generated Ti diffuses into iron.  相似文献   

4.
The reduction of ilmenite concentrate in 30vol% CO–70vol% N_2 atmosphere was characterized by thermogravimetric and differential thermogravimetric(TG–DTG) analysis methods at temperatures from 1073 to 1223 K.The isothermal reduction results show that the reduction process comprised two stages;the corresponding apparent activation energy was obtained by the iso-conversional and model-fitting methods.For the first stage,the effect of temperature on the conversion degree was not obvious,the phase boundary chemical reaction was the controlling step,with an apparent activation energy of 15.55–40.71 k J·mol~(–1).For the second stage,when the temperatures was greater than 1123 K,the reaction rate and the conversion degree increased sharply with increasing temperature,and random nucleation and subsequent growth were the controlling steps,with an apparent activation energy ranging from 182.33 to 195.95 k J·mol~(–1).For the whole reduction process,the average activation energy and pre-exponential factor were 98.94~(–1)18.33 k J·mol~(–1) and 1.820~(–1).816 min~(–1),respectively.  相似文献   

5.
Staged reduction kinetics and characteristics of iron oxide direct reduction by carbon were studied in this work. The characteristics were investigated by simultaneous thermogravimetric analysis, X-ray diffraction (XRD), and quadrupole mass spectrometry. The kinetics parameters of the reduction stages were obtained by isoconversional (model-free) methods. Three stages in the reduction are Fe2O3→Fe3O4, Fe3O4→FeO, and FeO→Fe, which start at 912 K, 1255 K, and 1397 K, respectively. The CO content in the evolved gas is lower than the CO2 content in the Fe2O3→Fe3O4 stage but is substantially greater than the CO2 contents in the Fe3O4→FeO and FeO→Fe stages, where gasification starts at approximately 1205 K. The activation energy (E) of the three stages are 126–309 kJ/mol, 628 kJ/mol, and 648 kJ/mol, respectively. The restrictive step of the total reduction is FeO→Fe. If the rate of the total reduction is to be improved, the rate of the FeO→Fe reduction should be improved first. The activation energy of the first stage is much lower than those of the latter two stages because of carbon gasification. Carbon gasification and FexOy reduction by CO, which are the restrictive step in the last two stages, require further study.  相似文献   

6.
The isothermal reduction of the Panzhihua titanomagnetite concentrates (PTC) briquette containing coal under argon atmosphere was investigated by thermogravimetry in an electric resistance furnace within the temperature range of 1250–1350℃. The samples reduced in argon at 1350℃ for different time were examined by X-ray diffraction (XRD) analysis. Model-fitting and model-free methods were used to evaluate the apparent activation energy of the reduction reaction. It is found that the reduction rate is very fast at the early stage, and then, at a later stage, the reduction rate becomes slow and decreases gradually to the end of the reduction. It is also observed that the reduction of PTC by coal depends greatly on the temperature. At high temperatures, the reduction degree reaches high values faster and the final value achieved is higher than at low temperatures. The final phase composition of the reduced PTC-coal briquette consists in iron and ferrous-pseudobrookite (FeTi2O5), while Fe2.75Ti0.25O4, Fe2.5Ti0.5O4, Fe2.25Ti0.75O4, ilmenite (FeTiO3) and wustite (FeO) are intermediate products. The reaction rate is controlled by the phase boundary reaction for reduction degree less than 0.2 with an apparent activation energy of about 68 kJ·mol?1 and by three-dimensional diffusion for reduction degree greater than 0.75 with an apparent activation energy of about 134 kJ·mol?1. For the reduction degree in the range of 0.2–0.75, the reaction rate is under mixed control, and the activation energy increases with the increase of the reduction degree.  相似文献   

7.
The reduction of titanomagnetite (TTM) ironsand, which contains 11.41wt% TiO2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: FeO + FeTiO3 → Fe2TiO4 → FeTiO3 → FeTi2O5 → TiO2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 kJ·mol-1.  相似文献   

8.
An effective process for recycling lead from hazardous waste cathode ray tubes(CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO–SiO_2–"FeO"–12wt%ZnO–3wt%Al_2O_3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO_2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO_2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared(FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO_2 mass ratio or increasing FeO content. The [FeO_6]-octahedra in the slag melt increase as the CaO/SiO_2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization(DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO_2 mass ratio and increasing FeO content.  相似文献   

9.
WO3–CeO2–TiO2 catalysts for NO (nitrogen monoxide) reduction by ammonia were prepared by a sol–gel method. The catalysts were characterized by BET, XRD, Raman, NH3/NO adsorption and H2-TPR to investigate the relationships among the catalyst composition, structure, redox property, acidity and deNOx activity. WO3–CeO2–TiO2 catalysts show a high activity in a broad temperature range of 200–480 1C. The low-temperature activity of catalysts is sensitive to the catalyst composition especially under low-O2-content atmospheres. It may be related to the synergistic effect between CeOx and WOx in the catalysts. On one hand, the interaction between ceria and tungsten oxide promotes the activation of gaseous oxygen to compensate the lattice oxygen consumed in NH3-SCR (selective catalytic reduction) reaction at low temperatures. Meanwhile, the Br?nsted acid sites mainly arise from tungsten oxides, Lewis acid sites mainly arise from ceria. Both of the Br?nsted and Lewis acid sites facilitate the adsorption of NH3 on catalysts and improve the stability of the adsorbed ammonia species, which are beneficial to the NH3-SCR reaction.  相似文献   

10.
Cold-bonded pellets, to which a new type of inorganic binder was applied, were reduced by H2–CO mixtures with different H2/CO molar ratios (1:0, 5:2, 1:1, 2:5, and 0:1) under various temperatures (1023, 1123, 1223, 1323, and 1423 K) in a thermogravimetric analysis apparatus. The effects of gas composition, temperature, and binder ratio on the reduction process were studied, and the microstructure of reduced pellets was observed by scanning electron microscopy–energy-dispersive spectrometry (SEM-EDS). The SEM-EDS images show that binder particles exist in pellets in two forms, and the form that binder particles completely surround ore particles has a more significant hinder effect on the reduction. The reduction equilibrium constant, effective diffusion coefficient, and the reaction rate constant were calculated on the basis of the unreacted core model, and the promotion effect of temperature on reduction was further analyzed. The results show that no sintering phenomenon occurred at low temperatures and that the increasing reaction rate constant and high gas diffusion coefficient could maintain the promotion effect of temperature; however, when the sintering phenomenon occurs at high temperatures, gas diffusion is hindered and the promotion effect is diminished. The contribution of the overall equilibrium constant to the promotion effect depends on the gas composition.  相似文献   

11.
Cold-bonded pellets, to which a new type of inorganic binder was applied, were reduced by H2–CO mixtures with different H2/CO molar ratios(1:0, 5:2, 1:1, 2:5, and 0:1) under various temperatures(1023, 1123, 1223, 1323, and 1423 K) in a thermogravimetric analysis apparatus. The effects of gas composition, temperature, and binder ratio on the reduction process were studied, and the microstructure of reduced pellets was observed by scanning electron microscopy–energy-dispersive spectrometry(SEM-EDS). The SEM-EDS images show that binder particles exist in pellets in two forms, and the form that binder particles completely surround ore particles has a more significant hinder effect on the reduction. The reduction equilibrium constant, effective diffusion coefficient, and the reaction rate constant were calculated on the basis of the unreacted core model, and the promotion effect of temperature on reduction was further analyzed. The results show that no sintering phenomenon occurred at low temperatures and that the increasing reaction rate constant and high gas diffusion coefficient could maintain the promotion effect of temperature; however, when the sintering phenomenon occurs at high temperatures, gas diffusion is hindered and the promotion effect is diminished. The contribution of the overall equilibrium constant to the promotion effect depends on the gas composition.  相似文献   

12.
A series of austenitic cast iron samples with different compositions were cast and a part of nickel in the samples was replaced by manganese for economic reason. Erosion–corrosion tests were conducted under 2wt% sulfuric acid and 15wt% quartz sand. The results show that the matrix of cast irons remains austenite after a portion of nickel is replaced with manganese.(Fe,Cr)3C is a common phase in the cast irons, and nickel is the main alloying element in high-nickel cast iron; whereas,(Fe,Mn)3C is observed with the increased manganese content in low-nickel cast iron. Under erosion–corrosion tests, the weight-loss rates of the cast irons increase with increasing time. Wear plays a more important role than corrosion in determining the weight loss. It is indicated that the processes of weight loss for the cast irons with high and low nickel contents are different. The erosion resistance of the cast iron containing 7.29wt% nickel and 6.94wt% manganese is equivalent to that of the cast iron containing 13.29wt% nickel.  相似文献   

13.
The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) by adding CaCO_3 was investigated. Thermodynamic analysis was employed to show the feasibility of calcium titanate formation by the reaction of ilmenite and Ca CO_3 in a reductive atmosphere, where ilmenite is more easily reduced by CO or carbon in the presence of CaCO_3. The effects of CaCO_3 dosage and reduction temperature on the phase transformation and metallization degree were also investigated in an actual roasting test. Appropriate increase of CaCO_3 dosages and reduction temperatures were found to be conducive to the formation of calcium titanate, and the optimum conditions were a CaCO_3 dosage of 18 wt% and a reduction temperature of 1400°C. Additionally, scanning electron microscopy–energy dispersive spectrometry(SEM–EDS) analysis shows that calcium titanate produced via the carbothermic reduction of VTC by CaCO_3 addition was of higher purity with particle size approximately 50 μm. Hence, the separation of calcium titanate and metallic iron will be the focus in the future study.  相似文献   

14.
Al2O3 –TiC/TiCN–Fe composite powders were successfully prepared directly from ilmenite at 1300–1400℃.The effects of Al/C ratio,sintering atmosphere,and reaction temperature and time on the reaction products were investigated.Results showed that the nitrogen atmosphere was bene cial to the reduction of ilmenite and the formation of Al2O3 –TiC/TiCN–Fe composite powders.When the reaction temperature was between 600 and 1100℃,the intermediate products,TiO2,Ti3O5 and Ti4O7 were found,which changed to TiC or TiCN at higher temperature.Al/C ratio was found to affect the reaction process and synthesis products.When Al addition was 0.5 mol,the Al2O3 phase did not appear.The content of carbon in TiCN rose when the reaction temperature was increased.  相似文献   

15.
The corrosion behaviors of X52, 3Cr low-alloy steel, and 13Cr stainless steel were investigated in an O_2–H2O–CO_2 environment at various temperatures and O_2–CO_2 partial-pressure ratios. The results showed that the corrosion rates of X52, 3Cr, and 13Cr steels increased with increasing temperature. The corrosion rates slowly increased at temperatures less than 100°C and increased sharply when the temperature exceeded 100°C. In the absence of O_2, X52, 3Cr, and 13Cr exhibited uniform corrosion morphology and Fe CO3 was the main corrosion product. When O_2 was introduced into the system, various forms of Fe_2O_3 appeared on the surface of the samples. The Cr content strongly influenced the corrosion resistance. The 3Cr steel with a low Cr content was more sensitive to pitting than the X52 or 13Cr steel. Thus, pitting occurred on the surface of 3Cr when 1.25 MPa of O_2 was added; this phenomenon is related to the non-uniform distribution of Crin 3Cr.  相似文献   

16.
The promotion effect of ceria modi fi cation on the low-temperature activity of V2O5-WO3/TiO2 catalyst was evaluated for the selective catalytic reduction of NO with NH3(NH3-SCR). The catalytic activity of 1 wt% V2O5-WO3/TiO2 was signi fi cantly enhanced by the addition of 8 wt%ceria, which exhibited a NO x conversion above 80% in a broad temperature range 190–450 1C. This performance was comparable with 3 wt%V2O5-WO3/TiO2, indicating that the addition of ceria contributed to reducing the usage of toxic vanadia in developing low-temperature SCR catalysts. Moreover, V1 Ce WTi exhibited approximately 10% decrease in NOx conversion in the presence of 60 ppm SO2. The characterization results indicated that active components of V, W and Ce were well dispersed on TiO2 support. The synergetic interaction between Ce and V species by forming V–O–Ce bridges enhanced the reducibility of VCe WTi catalyst and thus improved the low-temperature activity. The sulfur poisoning mechanism was also presented on a basis of the designed TPDC(temperature-programmed decomposition) and TPSR(temperatureprogrammed surface reaction) experiments. The deposition of(NH4)2SO4on V1 Ce WTi catalyst was much smaller compared with that on V1 Ti.On the other hand, the oxidation of SO2 to SO3was signi fi cantly promoted on the CeO2-modi fi ed catalyst, accompanied by the formation of cerium sulfates. Therefore, the deactivation of this catalyst was mainly attributed to the vanishing of the V–Ce interaction and the sulfation of active ceria.  相似文献   

17.
It is well-known that the surface quality of the niobium microalloy profiled billet directly affects the comprehensive mechanical properties of the H-beam. The effects of chromium on the γ/α phase transformation and high-temperature mechanical properties of Nb-microalloyed steel were studied by Gleeble tensile and high-temperature in-situ observation experiments. Results indicated that the starting temperature of the γ→α phase transformation decreases with increasing Cr content. The hot ductility of Nb-microalloyed steel is improved by adding 0.12 wt% Cr. Chromium atoms inhibit the diffusion of carbon atoms, which reduces the thickness of grain boundary ferrite. The number fractions of high-angle grain boundaries increase with increasing chromium content. In particular, the proportion is up to 48.7% when the Cr content is 0.12 wt%. The high-angle grain boundaries hinder the crack propagation and improve the ductility of Nb-microalloyed steel.  相似文献   

18.
It is well-known that the surface quality of the niobium microalloy profiled billet directly affects the comprehensive mechanical properties of the H-beam. The effects of chromium on the γ/α phase transformation and high-temperature mechanical properties of Nb-microalloyed steel were studied by Gleeble tensile and high-temperature in-situ observation experiments. Results indicated that the starting temperature of the γ→α phase transformation decreases with increasing Cr content. The hot ductility of Nb-microalloyed steel is improved by adding 0.12wt% Cr. Chromium atoms inhibit the diffusion of carbon atoms, which reduces the thickness of grain boundary ferrite. The number fractions of high-angle grain boundaries increase with increasing chromium content. In particular, the proportion is up to 48.7% when the Cr content is 0.12wt%. The high-angle grain boundaries hinder the crack propagation and improve the ductility of Nb-microalloyed steel.  相似文献   

19.
The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance(Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.  相似文献   

20.
Investigating the reaction mechanism between slag and 9CrMoCoB steel is important to develop the proper slag and produce qualified ingots in the electroslag remelting(ESR) process. Equilibrium reaction experiments between molten 9CrMoCoB steel and the slags of 55 wt%CaF2–20 wt%CaO–3 wt%MgO–22 wt%Al2O3–xwt%B2O3(x = 0.0, 0.5, 1.0, 1.5, 2.0, 3.0) were conducted. The reaction mechanisms between molten 9 CrMoCoB steel and the slags with different B2O3 contents were deduced based on the composition of the steel and slag samples at different reaction times. Results show that B content in the steel can be controlled within the target range when the B2O3 content is 0.5 wt% and the FeO content ranges from 0.18 wt% to 0.22 wt% in the slag. When the B2O3 content is ≥1 wt%, the reaction between Si and B2O3 leads to the increase of the B content of steel. The additions of SiO2 and B2O3 to the slag should accord to the mass ratio of [B]/[Si] in the electrode, and SiO2 addition inhibits the reaction between Si and Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号