首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
size of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system was investigated using lab experiments carried out in a carbon tube furnace. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD) were used to analyze the microstructure, components, and the mineral phases of synthetic slags. FactSage 7.1 was used to calculate the crystallization process of the molten slag. The results showed that the addition of Fe2O3 promoted the precipitation of spinel crystals and inhibited the formation of dicalcium silicate. The size of spinel crystals increased from 2.74 to 8.10 μm and the contents of chromium and iron in the spinel varied as the Fe2O3 addition was increased from 0 to 20wt%. Fe2O3 thermodynamically provided the spinel-forming components to enhance the formation of FeCr2O4, MgFe2O4, and Fe3O4. The addition of Fe2O3 increased the fraction of liquid phase in a certain temperature range and promoted diffusion by decreasing the slag's viscosity. Therefore, Fe2O3 is beneficial to the growth of spinel crystals in stainless steel slag.  相似文献   

2.
Mg–8Li–3Al+xCe alloys (x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg–8Li–3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B–117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg–8Li–3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.  相似文献   

3.
《矿物冶金与材料学报》2020,27(11):1551-1559
This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories. Three different crucibles were tested—MgO, Al2O3, and MgO–spinel. We studied the variations in the compositions of the inclusions and the alloy–crucible interface with the reaction time using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and X-ray diffraction. The results showed that the MgO and MgO–spinel crucibles form MgO-containing inclusions (Al–Mg oxides and Al–Mg–Ti oxides), whereas the inclusions formed when using the Al2O3 crucible are Al2O3 and Al–Ti oxides. We observed a new MgAl2O4 phase at the inner wall of the MgO crucible, with the alloy melted in the MgO crucible exhibiting fewer inclusions. No new phase occurred at the inner wall of the Al2O3 crucible. We discuss the mechanism of interaction between the refractories and the Ni-based superalloy. Physical erosion was found to predominate in the Al2O3 crucible, whereas dissolution and chemical reactions dominated in the MgO crucible. No reaction was observed between three crucibles and the Ti of the melt although the Ti content (3.8wt%) was higher than that of Al (2.1wt%).  相似文献   

4.
MgO·Al2O3 spinel type inclusions in casing steel were analyzed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).The results show that there are three forms.One is pure MgO·Al2O3 spinel,another is the composite oxide of the Mg-Al-Ca-Si-O system,and the third is the complex with oxide as a core covered by sulfide.The formation mechanisms were studied.The influences of slag basicity and vacuum degree on the magnesium content during the vacuum treatment of molten steel and furnace lining in molten steel were calculated with the coexistence theory of slag structure.The results show that the magnesium content increases with the increase in slag basicity and aluminum content in molten steel,and decreases with the increase in CO partial pressure.  相似文献   

5.
The Al–Al_2O_3–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M_1, M_2, and M_3, respectively, were prepared at 1700°C for 5 h under a flowing N_2 atmosphere using the reaction sintering method. After sintering, the Al–Al_2O_3–MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen M_1 was composed of MgO and MgAl_2O_4. Compared with specimen M_1, specimens M_2 and M_3 possessed MgAlON, and its production increased with increasing aluminum addition. Under an N_2 atmosphere, MgO, Al_2O_3, and Al in the matrix of specimens M_2 and M_3 reacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al–Al_2O_3–MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an N_2 atmosphere, the partial pressure of oxygen is quite low; thus, when the Al–Al_2O_3–MgO composites were soaked at 580°C for an extended period, aluminum metal was transformed into AlN. With increasing temperature, Al_2O_3 diffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with Al_2O_3 to form MgAl_2O_4. When the temperature was greater than(1640 ± 10)°C, AlN diffused into Al_2O_3 and formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and Mg Al_2O_4 at high temperatures because of their similar spinel structures.  相似文献   

6.
The kinetics and mechanism of natural wolframite interactions with sodium carbonate during air heating were studied. X-ray phase and X-ray microanalysis were used to establish that the initial monocrystalline wolframite consists of Fe0.5Mn0.5WO4 and Fe0.3Mn0.7WO4. Differential thermal analysis showed that the interaction of wolframite with sodium carbonate begins above 450℃ with the formation of tungstate, sodium ferrite, iron oxides, and manganese. Model experiments on sintering with the subsequent removal of water-soluble compounds (leaching) tracked the change in the structure of wolframite. The atomic ratio of Fe/Mn in wolframite does not change up to 600℃, and subsequently decreases to 0.2 during heating, which allows the mechanism of the process to be identified and indicates the greater reactivity of wolframites with an increased proportion of iron. Thermal analysis with data processing using non-isothermal kinetics established that the interaction of wolframite with sodium carbonate in an air stream proceeds via a two-stage mechanism, wherein the first stage is limited by diffusion (activation energy, E=243 kJ/mol) and the second stage is limited by autocatalysis (activation energy, E=212 kJ/mol) due to the formation of a Na2WO4-Na2CO3 eutectic.  相似文献   

7.
Various characterization methods, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller surface-area measurements, thermogravimetry–differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy, were used to study the mineral structure and surface characteristics of high-iron hydrargillite. Gibbsite, goethite, and hematite were found to be the main mineral components of hydrargillite, whereas the goethite and hematite were closely clad to the surface of the multilayer gibbsite crystals. Compared with the synthetic gibbsite, the hydrargillite contained more structural micropores generated by the mineral evolution during the mineralization process. The gibbsite in hydrargillite contained less crystal water compared with the synthetic gibbsite, and it was a typical polymorphic structure. The isomorphous substitution of Al and Fe was observed in goethite. The dissolution-controlling step of hydrargillite was the ionic diffusion speed because of the goethite and hematite that closely covered and encapsulated the gibbsite crystals.  相似文献   

8.
The mechanism of arsenic removal during a sintering process was investigated through experiments with a sintering pot and arsenic-bearing iron ore containing arsenopyrite; the corresponding chemical properties of the sinter were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD), and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). The experimental results revealed that the reaction of arsenic removal is mainly related to the oxygen atmosphere and temperature. During the sintering process, arsenic could be removed in the ignition layer, the sinter layer, and the combustion zone. A portion of FeAsS reacted with excess oxygen to generate FeAsO4, and the rest of the FeAsS reacted with oxygen to generate As2O3(g) and SO2(g). A portion of As2O3(g) mixed with Al2O3 or CaO, which resulted in the formation of arsenates such as AlAsO4 and Ca3(AsO4)2, leading to arsenic residues in sintering products. The FeAsS component in the blending ore was difficult to decompose in the preliminary heating zone, the dry zone, or the bottom layer because of the relatively low temperatures; however, As2O3(g) that originated from the high-temperature zone could react with metal oxides, resulting in the formation of arsenate residues.  相似文献   

9.
Quantitative parameters of bed combustion, including the thickness of the combustion zone (TCZ), the maximum temperature of the combustion zone (MTCZ), and the bed shrinkage, were characterized through a series of sinter pot tests in transparent quartz pots. The results showed that TCZ first ascended and then descended as the sintering process proceeded. The sintering process was divided into four stages according to the variation rate of the TCZ. A "relative-coordinate" method was developed to obtain the actual reaction temperature of sinter along the height direction. With increasing the sintering temperature, the reactants transformed and entered into liquid phases. The mineral composition and microstructure of the sinter were characterized through X-ray diffraction and scanning electron microscopy-energy-dispersive X-ray spectroscopy. Liquid phases with greater Fe and Al contents were more likely to form acicular-like silico-ferrite of calcium and aluminum after crystallization because of the outward spread of Al, which led to a better fluidity of the liquid. An evolution mechanism of "solid-state reaction-liquid phases formation-crystallization" of the mineral phases is proposed.  相似文献   

10.
Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitrogen and carbon was investigated as a function of discharge voltage using X-ray photoelectron spectroscopy. With an increase in discharge voltage both the C 1s and N 1s spectra shift to lower binding energy due to the formation of C-Si and N-Si bonds. The Si-C-N bonds were observed in the deconvolved C 1s and N 1s spectra. The X-ray diffractometer (XRD) results show that there were no crystals in the films. The thickness of the films was approximately 1-2 μm with scanning electron microscopy (SEM).  相似文献   

11.
In situ(α-Al_2O_3+ZrB_2)/Al composites with network distribution were fabricated using low-energy ball milling and reaction hot pressing. Differential thermal analysis(DTA) was used to study the reaction mechanisms in the Al–Zr O2–B system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) in conjunction with energy-dispersive X-ray spectroscopy(EDX) were used to investigate the composite phases, morphology, and microstructure of the composites. The effect of matrix network size on the microstructure and mechanical properties was investigated. The results show that the optimum sintering parameters to complete reactions in the Al–Zr O2–B system are 850°C and 60 min. In situ-synthesized α-Al2O3 and Zr B2 particles are dispersed uniformly around Al particles, forming a network microstructure; the diameters of the α-Al2O3 and Zr B2 particles are approximately 1–3 μm. When the size of Al powder increases from 60–110 μm to 150–300 μm, the overall surface contact between Al powders and reactants decreases, thereby increasing the local volume fraction of reinforcements from 12% to 21%. This increase of the local volume leads to a significant increase in microhardness of the in situ(α-Al2O3–Zr B2)/Al composites from Hv 163 to Hv 251.  相似文献   

12.
Based on detailed studies on the compositional zoning of garnet and biotite in pelitic rocks from the Jingshan group of granulite facies in north Jiaodong, P-T pseudosections with isopleths of Fe/(Fe + Mg) in garnet and biotite were calculated in the KF-MASH system for two representative rocks of sillimanite-garnet-cordierite-biotite gneiss ( Vbi/ Vg>1 ) and sillimanite-garnet gneiss (Vbi/ Vg<0.2) using the software THERMOCALC and the internally consistent thermodynamic dataset. With a comparison of the calculated Fe/(Fe+ Mg) values in garnet and biotite in the peak P-T fields constrained by peak mineral assemblages with the measured ones, it is concluded that the coarse garnet crystals with diffusion zoning from high grade meta-pelites can preserve their peak compositions even when they have experienced a cooling event, and that biotite crystals surrounded by fetsic minerals in biotite-rich rocks with Vbi/Vg> 1 can nearly preserve their peak compositions, and biotites in garnet-rich rocks with Vbi/Vg<0. 2 cannot preserve their peak compositions due to the influence of grain-boundary fluid.  相似文献   

13.
《矿物冶金与材料学报》2020,27(11):1499-1507
The effect of three heat processes with different calcium contents on the evolution of inclusions during the ladle furnace refining process of AISI 321 stainless steel was investigated. The size, morphology, and composition of the inclusions were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. After the addition of aluminum and titanium, the primary oxide in the AISI 321 stainless steel was an Al2O3–MgO–TiOx complex oxide, in which the mass ratio of Al2O3/MgO was highly consistent with spinel (MgO·Al2O3). After calcium treatment, the calcium content in the oxide increased significantly. Thermodynamic calculations show that when the Ti content was 0.2wt%, the Al and Ca contents were less than 0.10wt% and 0.0005wt%, respectively, which was beneficial for the formation of liquid inclusions in molten steel. Moreover, the modification mechanism of calcium on TiN-wrapped oxides in combination with temperature changes was discussed.  相似文献   

14.
《矿物冶金与材料学报》2015,22(10):1092-1100
In situ (α-Al2O3+ZrB2)/Al composites with network distribution were fabricated using low-energy ball milling and reaction hot pressing. Differential thermal analysis (DTA) was used to study the reaction mechanisms in the Al–ZrO2–B system. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDX) were used to investigate the composite phases, morphology, and microstructure of the composites. The effect of matrix network size on the microstructure and mechani-cal properties was investigated.The results show that the optimum sintering parameters to complete reactions in the Al–ZrO2–B system are 850℃ and 60 min.In situ-synthesizedα-Al2O3 and ZrB2 particles are dispersed uniformly around Al particles, forming a network micro-structure; the diameters of theα-Al2O3 and ZrB2 particles are approximately 1–3μm. When the size of Al powder increases from 60–110μm to 150–300μm, the overall surface contact between Al powders and reactants decreases, thereby increasing the local volume fraction of re-inforcements from 12% to 21%. This increase of the local volume leads to a significant increase in microhardness of thein situ (α-Al2O3–ZrB2)/Al composites from Hv 163 to Hv 251.  相似文献   

15.
Geopolymers are three-dimensional aluminosilicates formed in a short time at low temperature by geopolymerization. In this pa-per, alkali-activated foam geopolymers were fabricated from circulating fluidized bed fly ash (CFA), and the effect of SiO2/Na2O mole ratio (0.91-1.68) on their properties was studied. Geopolymerization products were characterized by mechanical testing, scanning electron mi-croscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The results show that SiO2/Na2O mole ratio plays an important role in the mechanical and morphological characteristics of geopolymers. Foam samples prepared in 28 d with a SiO2/Na2O mole ratio of 1.42 exhibit the greatest compressive strength of 2.52 MPa. Morphological analysis reveals that these foam geo-polymers appear the relatively optimized pore structure and distribution, which are beneficial to the structure stability. Moreover, a combina-tion of the Si/Al atomic ratio ranging between 1.47 and 1.94 with the Na/Al atomic ratio of about 1 produces the samples with high strength.  相似文献   

16.
The formation of thermally grown oxide(TGO) during high temperature is a key factor to the degradation of thermal barrier coatings(TBCs)applied on hot section components. In the present study both the Co Ni Cr Al Y bond coat and Zr O_2-8 wt.% Y_2O_3(8YSZ) ceramic coat of TBCs were prepared by air plasma spraying(APS). The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD) analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ'phases,β phase reducesd as the oxidation time increased. The TGO comprised α-Al_2O_3 formed in the first 2 h. Co O, Ni O, Cr_2O_3 and spinel oxides appeared after 20 h of oxidation. Contents of Co O and Ni O reduced while that of Cr_2O_3 and spinel oxides increased in the later oxidation stage.The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h~(0.5) for TBCs and 0.354 μm/h0.5for pure BCs.  相似文献   

17.
The evolutionary process and intermetallic compounds of Cu/Al couples during isothermal heating at a constant bonding temperature of 550℃ were investigated in this paper. The interfacial morphologies and microstructures were examined by optical microscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, and X-ray diffraction. The results suggest that bonding is not achieved between Cu and Al at 550℃ in 10 min due to undamaged oxide films. Upon increasing the bonding time from 15 to 25 min, however, metallurgical bonding is obtained in these samples, and the thickness of the reactive zone varies with holding time. In the interfacial region, the final microstructure consists of Cu9Al4, CuAl, CuAl2, and α-Al + CuAl2. Furthermore, these results provide new insights into the mechanism of the interfacial reaction between Cu and Al. Microhardness measurements show that the chemical composition exerts a significant influence on the mechanical properties of Cu/Al couples.  相似文献   

18.
The aim of the present study was to investigate the phases formed during ball milling of Al–TiO_2–NiO. For this purpose, a mixture of Al–TiO_2–NiO with a molar ratio of 6:1:1 was used. Characterization of the milled powders by X-ray diffraction, differential thermal analysis, field-emission scanning electron microscopy, and transmission electron microscopy showed the formation of nanocrystalline NiTi_2 along with AlNi. A thermodynamical investigation confirmed that NiO was reduced by Al during ball milling, which consequently promoted TiO_2 reduction and the formation of NiTi_2. Al is capable of reducing NiO either during ball milling or at temperatures above the melting point of Al; by contrast, TiO_2 can be reduced by Al only by milling.  相似文献   

19.
The microstructure evolution and electrolysis behavior of(Cu_(52)Ni_(30)Fe_(18))–x Ni Fe_2O_4(x=40wt%,50wt%,60wt%,and 70wt%)composite inert anodes for aluminum electrowinning were studied.Ni Fe_2O_4 was synthesized by solid-state reaction at 950°C.The dense anode blocks were prepared by ball-milling followed by sintering under a N_2 atmosphere.The phase evolution of the anodes after sintering was determined by scanning electron microscopy and energy-dispersive X-ray spectroscopy.The results indicate that a substitution reaction between Fe in the alloy phase and Ni in the oxide phase occurs during the sintering process.The samples were also examined as inert anodes for aluminum electrowinning in the low-temperature KF–NaF–AlF_3 molten electrolyte for 24 h.The cell voltage during electrolysis and the corrosion scale on the anodes were analyzed.The results confirm that the scale has a self-repairing function because of the synergistic reaction between the alloy phase with Fe added and the oxide phase.The estimated wear rate of the(Cu_(52)Ni_(30)Fe_(18))–50Ni Fe_2O_4 composite anode is 2.02 cm·a~(-1).  相似文献   

20.
We have prepared a series of(ZnO)1-x(Fe2O3)x≤0.10bulk samples with various concentrations of Fe dopant by ball milling and investigated their structural, compositional, optical and magnetic properties by means of X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS),Raman spectrometer and vibrating sample magnetometer(VSM), respectively. Information about different impurity phases was obtained through Rietveld refinements of XRD data analysis. XPS results showed different valence states(Fe2+ tand Fe3+) supported by shaking satellite peaks in samples. With increasing Fe doping percentage, the crystal quality deteriorated and a shift of E2 low band(characteristic of ZnO) has been observed in Raman spectra. Energy band gap estimated from reflectance UV–vis spectroscopy showed shift for all bulk samples. The magnetic behavior was examined using a vibrating sample magnetometer(VSM), indicating ferromagnetic behavior at room temperature(300 K). The effective magnetic moment per Fe atom decreases with increase in doping percentage which indicates that ferromagnetic behavior arises from the substitution of Fe ions in the ZnO lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号