首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25℃ and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.  相似文献   

2.
The effect of the microstructure of an Al 7050-T7451 substrate on the anodic oxide formation in sulfuric acid was studied in this article. The microstructure of the substrate was assessed by optical microscope (OM) and transmission electron microscope (TEM). The surface and cross-section morphologies of the oxide films were examined by scanning electron microscope (SEM). The chemical composition of intermetallic particles in the alloys and films was investigated using energy dispersive spectroscope (EDS). The roles of intermetallic phases and grain or subgrain boundaries on the oxide film formation were researched using the potentiodynamic and potentiostatic polarization technique in sulfuric acid solution. The results show that the transition of coarse intermetallic particles or grain (subgrain) boundaries at the surface of Al alloys can be characterized by potentiodynamic polarization curves. The surface and cross-section micrographs of the anodic layer seem to preserve the microstructure of the substrate. Large cavities in the anodic films are caused by the preferential dissolution of coarse AItCuMg particles and the entrance of Cu-rich remnants into the electrolyte during anodizing. The Al7Cu2Fe particles tend to be occluded in the oxide layer or lose from the oxide surface because of peripheral trenching. Small pores in the films are induced by the dissolution of precipitates in grain or subgrain boundaries. The film surface of recrystallized grain bodies is smooth and homogeneous.  相似文献   

3.
In this work, silicon ink composing of silicon powder and zinc oxide solution was formulated and spin-coated on quartz and n/p-Si substrates followed by drying the films under atmosphere at the temperature of 550°C. The results showed that this top-addition layer could be the highly promising layer for photo-generating carriers in third-generation photovoltaics to enhance blue-light absorption. X-ray diffraction and scanning electron microscopy techniques were used to study the presence of silicon and zinc oxide nano-crystallites. The thin films consisting of different energy bandgap of Si nanocrystals(~100 nm) with narrow bandgap and spherical Zn O:Bi nanocrystal(~20 nm) with wider bandgap could be obtained from the evidence of bandgap enlargement. The band gaps of the thin films were tunable by adjusting silicon dots density in Zn O:Bi film. Energy upshift of light absorption edge depended on the silicon dots density was observed in the range 1.6–3.3 eV related band gap enlargement by Tauc plot. Under illumination, a high photocurrent gain of the thin film comprised of low Si dots density coated on a quartz substrate was about 10~3 times higher compared with its dark current. This result is agreeably explained in terms of its lower superficial trap states at the interface between silicon and zinc oxide matrix. The composite layer can be applied to a third-generation solar cell with the efficiency 1.50% higher than that with a typical crystalline-Si solar cell.  相似文献   

4.
NiOx/Ni81Fe19 and Co/AlOx/Co magnetic multilayers were fabricated by reactive RF/DC magnetron sputtering on clean glass substrates and oxidized Si (100) substrates, respectively. The exchange biasing field (Hex) between NiOx and Ni81Fe19 as a function of NiOx oxidation states was studied by X-ray photoelectron spectroscopy (XPS). The oxidation states and the oxide thickness of Al layers in magnetic multilayer films consisting of Co/AlOx/Co were also analyzed. It is found that the Hex of NiOx/Ni81Fe19 films only depends on Ni2+ but not on Ni3+ or Ni. The bottom Co can be completely covered by depositing an Al layer thicker than 2.0 nm. The oxide layer was Al2O3, and its thickness was 1.15 mn.  相似文献   

5.
The paper reports our novel work on chemical vapor deposition coating of titanium nitride (TiN) thin film on glass for energy saving. TiN films were deposited on glass substrates by atmospheric pressure chemical vapor deposition (APCVD) using titanium tetrachloride (TiCl4) and ammonia (NH3) as precur-sors. As a result, TiN films with a thickness of 500 nm were obtained. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), four-point probe method and optical spectroscopy were respectively employed to study the crystallization, microstructure, surface mor-phology, electrical and optical properties of the coated TiN films. The deposited TiN films are of NaCl structure with a preferred (200) orientation. The particles in the film are uniform. The reflectivity of the TiN coating in the near-infrared (NIR) band can reach over 40%, the visible transmittance is approxi-mately 60%, and the visible reflectivity is lower than 10%. The sheet electrical resistance is 34.5Ω. According to Drude theory, the lower sheet resistance of 34.5 Ω gives a high reflectivity of 71.5% around middle-far infrared band. The coated films exhibit good energy-saving performance.  相似文献   

6.
The paper reports our novel work on chemical vapor deposition coating of titanium nitride (TIN) thin film on glass for energy saving. TiN films were deposited on glass substrates by atmospheric pressure chemical vapor deposition (APCVD) using titanium tetrachloride (TiCl4) and ammonia (NH3) as precursors. As a result, TiN films with a thickness of 500 nm were obtained. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), four-point probe method and optical spectroscopy were respectively employed to study the crystallization, microstructure, surface morphology, electrical and optical properties of the coated TiN films. The deposited TiN films are of NaCI structure with a preferred (200) orientation. The particles in the film are uniform. The reflectivity of the TiN coating in the near-infrared (NIR) band can reach over 40%, the visible transmittance is approximately 60%, and the visible refiectivity is lower than 10%. The sheet electrical resistance is 34.5 Ω. According to Drude theory, the lower sheet resistance of 34.5 Ω gives a high reflectivity of 71.5% around middle-far infrared band. The coated films exhibit good energy-saving performance.  相似文献   

7.
Fluorapatite protective films were prepared on marble substrates using a biomimetic method. By mimicking the mineralization mechanism of enamel, phosphorus and fluorine were introduced on the surface of the marble substrate. In the presence of a biological template, namely collagen, an integrated fluorapatite film was produced and the marble substrate was entirely covered. The prepared fluorapatite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) spectroscopy. The performances of the fluorapatite films were evaluated by color changes, capillary water absorption, and acid resistance tests. The results revealed that the fluorapatite films had good compatibility with the marble substrate; the physical properties such as color and capillary water adsorption of the marble substrates were unchanged. The fluorapatite films also had good acid resistance and were stable even in heavy acid rain.  相似文献   

8.
Isothermal and cyclic oxidation behavior of chromium and its superficially applied nanometric CeO2 samples were studied at 900℃in air. Scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and high resolution electronic microscopy (HREM) were used to examine the morphology and micro-structure of oxide films. It was found that ceria addition greatly improved the anti-oxidation ability of Cr both in isothermal and cyclic oxidizing experiments. Acoustic emission (AE) technique was used in situ to monitor the cracking and spalling of oxide films, and AE signals were analyzed in time-domain and number-domain according to the related oxide fracture model. Laser Raman spectrometer was also used to study the stress status of oxide films formed on Cr with and without ceria. The main reason for the improvement in anti-oxidation of chromium was that ceria greatly reduced the growing speed and grain size of Cr2O3. This fine-grained Cr2O3 oxide film might have better high temperature plasticity and could relieve parts of compressive stress by means of creeping, and maintained the ridge character and relatively low internal stress level. Meanwhile, ceria application reduced the size and the number of interfacial defects, while remarkably enhanced the adhesive property of Cr2O3 oxide scale formed on Cr substrate.  相似文献   

9.
Oxide films formed on the surfaces of Fe-based bulk metallic glasses in the temperature range between 373 K and 573 K were characterized and their effects on the corrosion behaviors were investigated by microstructural and electrochemical analysis. The oxide film formed at 573 K is iron-rich oxide and it exhibits an n-type semiconductor at a higher potential than 0.35 V and a p-type semiconductor at a lower potential than 0.35 V. Capacitance measurements show that the donor density decreases with the increase in oxidation temperature, while the thickness of the space charge layer increases with the oxidation temperature rising. The result of immersion tests shows that the mass loss rate increases with the oxidation temperature rising. Therefore, the correlation between microstructure and corrosion resistance needs to be proposed because the corrosion resistance is deteriorated with the development of the oxide films.  相似文献   

10.
Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.  相似文献   

11.
Independent microstructures made of Ni metal were fabricated by five sequential processes:porous anodic oxide film for-mation, pore sealing, laser irradiation, Ni electroplating, and removal of the aluminum substrate and anodic oxide films. Aluminum plates and rods were anodized in an oxalic acid solution to form porous type anodic oxide films, and then immersed in boiling dis-tilled water for pore sealing. The anodized and pore-sealed specimens were irradiated with a pulsed neodymium-doped yttrium alu-minum garnet (Nd-YAG) laser beam in a Ni plating solution to remove anodic oxide film locally by rotating and moving up/down with an XYZθ-stage. Nickel was deposited at the area where film had been removed by cathodic polarization in the solution before removing the aluminum substrate and anodic oxide films in NaOH solutions. Cylindrical or plain network structures were fabricated successfully.  相似文献   

12.
Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitrogen and carbon was investigated as a function of discharge voltage using X-ray photoelectron spectroscopy. With an increase in discharge voltage both the C 1s and N 1s spectra shift to lower binding energy due to the formation of C-Si and N-Si bonds. The Si-C-N bonds were observed in the deconvolved C 1s and N 1s spectra. The X-ray diffractometer (XRD) results show that there were no crystals in the films. The thickness of the films was approximately 1-2 μm with scanning electron microscopy (SEM).  相似文献   

13.
Boron-doped NiO thin films were prepared on glass substrates at 400℃ by airbrush spraying method using a solution of nickel nitrate hexahydrate. Their physical properties were investigated as a function of dopant concentration. From X-ray diffraction patterns, it is observed that the films have cubic structure with lattice parameters varying with boron concentration. The morphologies of the films were examined by using scanning electron microscopy, and the grain sizes were measured to be around 30–50 nm. Optical measurements show that the band gap energies of the films first decrease then increase with increasing boron concentration. The resistivities of the films were determined by four point probe method, and the changes in resistivity with boron concentration were investigated.  相似文献   

14.
Au films with a thickness of about 300 nm were deposited on SiO2/Si(100) and mica substrates by dc sputtering. X-ray diffraction spectroscopy and field emission scanning electron microscopy were used to analyze the structure and internal stress of the Au films. The films grown on SiO2/Si(100) show a preferential orientation of [111] in the growth direction. However the films grown on mica have mixture crystalline orientations of [111], [200], [220] and [311] in the growth direction and the orientations of [200] and [311] are slightly more than those of [111] and [220]. An internal stress in the films grown on SiO2/Si(100) is tensile. For Au films grown on mica the internal stresses in the [111]- and [311]-orientation grains are compressive while those in the [200]- and [220]-orientation grains are tensile. Au films grown SiOJSi(100) have some very large grains with a size of about 400 nm and have a wider grain size distribution compared with those grown on mica.  相似文献   

15.
Isothermal and cyclic oxidation behaviors of pure and yttrium-implanted nickel were studied at 1000℃ in air. The oxide scales formed on nickel substrates were performed using SEM and TEM. It was found that Yimplantation greatly improved the anti-oxidation ability of nickel both in isothermal and cyclic oxidizing experiments. Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium. The main reason for the improvement in antioxidation and adhesion of oxide scale was Y-implantation greatly reduced the grain size of NiO and lowered the compressive stress within the scale. Yttrium implantation enhanced the adhesion of protective NiO oxide scale formed on nickel substrate.?AKeywords:Oxidation, Ion-implantation, Laser Raman, Yttrium.  相似文献   

16.
The surface-passivated and non-surface-passivated zinc oxide nano-particles (marked as s-nanoZnO and ns-nanoZnO respectively) were evenly dispersed in polymer solutions with the aid of ultrasonic vibration to prepare nanocomposite film by free casting and to prepare nanocomposite fibers by wet spinning and to prepare nancomposites coating by surface smearing. The dispersion of s-nanoZnO and nsnanoZnO in PAN matrix were observed by transmittance electron microscopy, the mechanical properties of the relevant compesite samples were studied by INSRTON tensile strength tester. It was found that s-nanoZnO behaves a well-dispersed morphology in PAN films and fibers when its concentration was 2 wt% but ns-nanoZnO nano particles agglomerate into larger congeries in PAN films. It means that the surface-passivated process oft zinc oxide nano. particles was effective to disperse. The relative intensity and elonsation at break of s-nanoZnO-PAN composite fibers show maximum values with the increase of nano particle content in compesites (from 0 wt% to 2 wt% of s- nanoZnO). The elasticity of the composite fibers increases whereas their modulus declines. Balanced the changes of the properties mentioned above, 2 wt% s-nanoZnO in PAN matrix is a proper content for the composite fibers spun by wet spinning. The result of surface smearing test means that the reactim between s-nanoZnO and polymer can be indicated by the color of nanocomposite surface coat on fibers.  相似文献   

17.
The diffusion mechanism of carbide-forming elements from a molten salt bath to a substrate surface was studied in this research, with particular focus on the processes occurring in the molten bath at the time of coating. Metal, oxide, and metal-oxide baths were investigated, and the coating process was performed on H13 steel substrates. Scanning electron microscopy and electron-probe microanalysis were used to study the coated samples and the quenched salt bath. The thickness of the carbide coating layer was 6.5 ±0.5, 5.2 ±0.5, or 5.7 ±0.5 μm depending on whether it was deposited in a metal, oxide, or metal-oxide bath, respectively. The phase distribution of vanadium-rich regions was 63%, 57%, and 74% of the total coating deposited in metal, oxide, and metal-oxide baths, respectively. The results obtained using the metal bath indicated that undissolved suspended metal particles deposited onto the substrate surface. Then, carbon subsequently diffused to the substrate surface and reacted with the metal particles to form the carbides. In the oxide bath, oxide powders dissolved in the bath with or without binding to the oxidative structure (Na2O) of borax; they were then reduced by aluminum and converted into metal particles. We concluded that, in the metal and oxide baths, the deposition of metal particles onto the sample surface is an important step in the formation of the coating.  相似文献   

18.
《矿物冶金与材料学报》2021,28(12):1957-1965
To investigate the oxidation behavior of a nickel-based superalloy with high hafnium content (1.34wt%), this study performed isothermal oxidation tests at 900, 1000, and 1100°C for up to 200 h. X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray spectroscopy were applied to study the oxidation behavior. The weight gain of the high Hf nickel-based superalloy exhibited a parabola-like curve, and no spallation of the oxide scale was observed during the oxidation tests. The alloy presented excellent oxidation resistance, and no HfO2 was observed in the oxide scale at 900°C. With the increase of the oxidation temperature to 1000°C, HfO2 particles formed in the spinel phases of the scale, and “peg-like” HfO2 was observed within and beneath the inner layer of Al2O3 after 200 h. As the oxidation temperature rose to 1100°C, “peg-like” HfO2 was observed at the early stage of the oxidation test (within 25 h). The formation mechanism of HfO2 and its impact on oxidation resistance were investigated based on the analysis of the oxidation test results at different temperatures.  相似文献   

19.
Oil-soluble In2O3 nanoparticles and In2O3–SnO 2 nanocomposites were prepared in oleylamine via decomposition of metal acetylacetonate precursors. Thin films of In2O3 and In2O3–SnO 2 were obtained by spin-coating solutions of the oil-soluble In2O3 nanoparticles and In2O3–SnO 2 nanocomposites onto substrates and then calcining them. Transmission electron microspectroscopy, scanning electron microspectroscopy, atomic force microspectroscopy, X-ray diffraction, ultraviolet–visible absorption, and photoluminescence spectroscopy were used to investigate the properties of the nanoparticles and thin films. The In2O3 nanoparticles were cubic-phased spheres with a diameter of ~8 nm; their spectra exhibited a broad emission peak centered at 348 nm. The In2O3–SnO 2 nanocomposites were co-particles composed of smaller In2O3 particles and larger SnO 2 particles; their spectra exhibited a broad emission peak at 355 nm. After the In2O3–SnO 2 nanocomposites were calcined at 400°C, the obtained thin films were highly transparent and conductive, with a thickness of 30–40 nm; the surfaces of the thin films were smooth and crack-free.  相似文献   

20.
Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号