首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316 L and low alloy high strength steel L415. The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316 L and L415 was systematically investigated. The microstructures of both heat affected zones of L415 and weld metal were substantially refined, and the clusters of δ ferrite in traditional tungsten inert gas(TIG) weld were changed to a dispersive distribution via the ultrasonic vibration. The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld. With the application of ultrasonic vibration, the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15% to31.54%, respectively. The content of Σ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one, indicating an excellent weld metal crack resistance.  相似文献   

2.
Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316L and low alloy high strength steel L415. The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316L and L415 was systematically investigated. The microstructures of both heat affected zones of L415 and weld metal were substantially refined, and the clusters of δ ferrite in traditional tungsten inert gas (TIG) weld were changed to a dispersive distribution via the ultrasonic vibration. The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld. With the application of ultrasonic vibration, the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15% to 31.54%, respectively. The content of Σ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one, indicating an excellent weld metal crack resistance.  相似文献   

3.
The recrystallization behavior of deformed Ti40 alloy during a heat-treatment process was studied using electron backscatter diffraction and optical microscopy. The results show that the microstructural evolution of Ti40 alloy is controlled by the growth behavior of grain-boundary small grains during the heating process. These small grains at the grain boundaries mostly originate during the forging process because of the alloy’s inhomogeneous deformation. During forging, the deformation first occurs in the grain-boundary region. New small recrystallized grains are separated from the parent grains when the orientation between deformation zones and parent grains exceeds a certain threshold. During the heating process, the growth of these small recrystallized grains results in a uniform grain size and a decrease in the average grain size. The special recrystallization behavior of Ti40 alloy is mainly a consequence of the alloy’s high β-stabilized elemental content and high solution strength of the β-grains, which partially explains the poor hot working ability of Ti–V–Cr-type burn-resistant titanium alloys. Notably, this study on Ti40 burn-resistant titanium alloy yields important information related to the optimization of the microstructures and mechanical properties.  相似文献   

4.
Continuous-drive rotary friction welding was performed to join cylindrical specimens of carbon steel(EN24) and nickel-based superalloy(IN718), and the microstructures of three distinct weld zones—the weld interface(WI)/thermo-mechanically affected zone(TMAZ),the heat-affected zone(HAZ), and the base metal—were examined.The joint was observed to be free of defects but featured uneven flash formation.Electron backscatter diffraction(EBSD) analysis showed substantial changes in high-angle grain boundaries, low-angle grain boundaries, and twin boundaries in the TMAZ and HAZ.Moreover, significant refinement in grain size(2 –5 μm) was observed at the WI/TMAZ with reference to the base metal.The possible causes of these are discussed.The microhardness profile across the welded joint shows variation in hardness.The changes in hardness are ascribed to grain refinement, phase transformation, and the dissolution of strengthening precipitates.The tensile test results reveal that a joint efficiency of 100% can be achieved using this method.  相似文献   

5.
The present work is focused on the microstructure and mechanical properties of Ti14 alloy with different semisolid deformation ratios during forging tests. The results revealed that the forging ratio had a significant effect on the precipitation of the alloy. Fewer plate-shaped Ti2Cu tended to precipitate on grain boundaries with higher forging ratios, and finally the plate-shaped Ti2Cu formed precipitate-free zones along grain boundaries with a forging ratio of 75%. The precipitation on grain boundaries was found to be controlled by a peritectic reaction. Large forging ratios accelerated the extrusion of liquid and resulted in less liquid along the prior grain boundaries, which reduced the peritectic precipitation in this region and formed precipitate-free zones during re-solidification. In addition, increasing the forging ratio could accelerate dynamic recrystallization, which is favorable for improving the semisolid formability. The tensile ductility increased with increasing forging ratio, and a mixed fracture mode, involving both cleavage and dimple fracture, was observed after forging with a forging ratio of 75%, which is attributed to the presence of precipitate-free zones formed along grain boundaries during semisolid processing.  相似文献   

6.
Continuous-drive rotary friction welding was performed to join cylindrical specimens of carbon steel (EN24) and nickel-based superalloy (IN718), and the microstructures of three distinct weld zones—the weld interface (WI)/thermo-mechanically affected zone (TMAZ), the heat-affected zone (HAZ), and the base metal—were examined. The joint was observed to be free of defects but featured uneven flash formation. Electron backscatter diffraction (EBSD) analysis showed substantial changes in high-angle grain boundaries, low-angle grain boundaries, and twin boundaries in the TMAZ and HAZ. Moreover, significant refinement in grain size (2–5 μm) was observed at the WI/TMAZ with reference to the base metal. The possible causes of these are discussed. The microhardness profile across the welded joint shows variation in hardness. The changes in hardness are ascribed to grain refinement, phase transformation, and the dissolution of strengthening precipitates. The tensile test results reveal that a joint efficiency of 100% can be achieved using this method.  相似文献   

7.
The effects of preheat treatments on the microstructures and mechanical properties of tungsten inert gas (TIG)-welded AZ61 magnesium alloy joints were studied by microstructural observations, microhardness tests and tensile tests. The results showed that the volume fraction of the lamellar β-Mg17(Al,Zn)12 intermetallic compound of in fusion zone (FZ) increased from 15% to 66% with an increase in preheat temperature. Moreover, the microhardness of the FZ and the ultimate tensile strength of the welded joints reached their maximum values when the preheat temperature was 300℃ because more lamellar β-Mg17(Al,Zn)12 intermetallic compounds were distributed at the α-Mg grain boundaries and no cracks and pores formed in the FZ of the welded joint.  相似文献   

8.
The evolution of the microstructure, texture, and microhardness of 5754 aluminum alloy subjected to high-temperature plastic deformation under different deformation conditions was studied on the basis of thermal simulations and electron-backscattered diffraction and Vickers microhardness experiments. The results of a misorientation angle study show that an increase in the deformation temperature and strain rate promoted the transformation of low-angle grain boundaries to high-angle grain boundaries, which contributed to dynamic recrystallization. The effect of the deformation parameters on the texture and its evolution during the recrystallization process was explored on the basis of the orientation distribution function. The results demonstrate that the deformed samples mainly exhibited the features of type A, B, and B textures. The formation and growth of the recrystallized grains clearly affected the texture evolution. The microhardness results show that the variation of the microhardness was closely related to the temperature, strain rate, and dynamic recrystallization.  相似文献   

9.
In this study, we present the experimental laser welding of super-eutectic Zn-Al(ZA) alloy. Microstructure characteristics of the ZA alloy's bond area welded by pulsed laser were investigated using an optical microscope, scanning electron microscope, energy diffraction spectrum and X-Ray diffraction. The results showed that the microstructures in the weld mainly consisted of threadlike columnar crystals, coarse dendrites and fine equiaxed grains. Secondary particles were produced in the interdendritic zones due to the composition segregation. A poor Al area was formed in η grain inside while a rich Al area took shape outside the η grain. The occurrence of the composition segregation increased the grain boundary cracking tendency. The existence of a large number of η phases greatly increased the brittle of this material. The presence of many cleavage steps in the fractograph principally depended on the secondary cleavage effect between two cleavage cracks in different planes. The evolution of cracks along the twinning plane was the result of the secondary cleavage substituting for the twinning deformation in the vicinity of the crack tip.  相似文献   

10.
Owing to excellent strength, toughness and corrosion resistance, duplex stainless steels(DSS) are widely used in constructional and petrochemical applications. Sigma phase, which has detrimental impact on the properties, is readily precipitated during hot working of DSS. However, precipitation behavior of sigma phase during superplastic deformation, which is the most significant processing method of DSS, is still unclear. In the current study,the effect of superplastic deformation on the precipitation behavior of sigma phase was investigated in 3207 duplex stainless steel. The result shows that superplastic deformation could prevent sigma phase precipitation generally by increasing mobility of grain boundaries and decreasing misorientation of the sigma phase boundaries, resulting in some sigma phase precipitated on the twin boundaries. Most of the sigma phase precipitated on ferrite-austenite interface with misorientation of 20–25°, while it precipitated in ferrite or austenite with the misorientation of 40°–45°. The orientation relationship between sigma phase and matrix matched well in austenite and on the ferrite/austenite interfaces, while it showed a small misfit in ferrite. The prevention effect of the superplastic deformation on the sigma phase precipitation was beneficial to quasi stable deformation stage,resulting in longer elongation.  相似文献   

11.
The alloy 5052 was welded by friction stir welding (FSW) and tungsten inert gas (TIG) welding. The effect of welding processes (FSW and TIG) on the fatigue properties of 5052 aluminum-welded joints was analyzed based on fatigue testing, and the S-N curve of the joints were established. The results show that the fatigue properties of FSW welded joints are better than those of TIG welded joints. The fatigue strength is determined as 65 MPa under 106 cycling of fatigue life. The microstructure of joints is fine grains and narrow HAZ zone in FSW welds, which inhibit the growth of cracks and produce high fatigue life compared with that of TIG welds. Fracture morphologies also show that the fatigue fracture results from weld defects.  相似文献   

12.
One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ). In the present study, the microstructural characteristics of tungsten inert gas (TIG) welded AISI409 ferritic stainless steel were investigated by electron backscattered diffraction (EBSD), and the effects of welding parameters on the grain size, local misorientation, and low-angle grain boundaries were studied. A 3-D finite element model (FEM) was developed to predict the effects of welding parameters on the holding time of the HAZ above the critical temperature of grain growth. It is found that the base metal is not fully recrystallized. During the welding, complete recrystallization is followed by severe grain growth. A decrease in the number of low-angle grain boundaries is observed within the HAZ. FEM results show that the final state of residual strains is caused by competition between welding plastic strains and their release by recrystallization. Still, the decisive factor for grain growth is heat input.  相似文献   

13.
Al-Mg alloys are an important class of non-heat treatable alloys in which Mg solute and grain size play essential role in their mechanical properties and plastic deformation behaviors.In this work,a cyclical continuous expanded extrusion and drawing(CCEED)process was proposed and implemented on an Al-3Mg alloy to introduce large plastic deformation.The results showed that the continuous expanded extrusion mainly improved the ductility,while the cold drawing enhanced the strength of the alloy.With the increased processing CCEED passes,the multi-pass cross shear deformation mechanism progressively improved the homogeneity of the hardness distributions and refined grain size.Continuous dynamic recrystallization played an important role in the grain refinement of the processed Al-3Mg alloy rods.Besides,the microstructural evolution was basically influenced by the special thermomechanical deformation conditions during the CCEED process.  相似文献   

14.
The aim of this work is to investigate the mechanical properties and microstructures of friction-stir welded (FSWed) St52 structural steel joints. In this study, St52 steel plates with a thickness of 4 mm were butt-welded by friction-stir welding (FSW) using a tungsten carbide tool having a conical pin. The microstructure of the welded zone consists of equiaxed fine ferrite, grain boundary ferrite, Widmanstatten ferrite, and aggregates of ferrite + cementite. The microhardness measurements showed that the hardness of the welded zone was significantly higher than that of the base metal. The FSWed St52 joint exhibited a significant strength overmatching in the weld region and a strength performance similar to or slightly higher than that of the base plate.  相似文献   

15.
The selective abnormal growth of Goss grains in magnetic sheets of Fe-3%Si (grade Hi-B) induced by second-phase particles (AlN and MnS) was studied using a modified Monte Carlo Potts model. The starting microstructures for the simulations were generated from electron backscatter diffraction (EBSD) orientation imaging maps of recrystallized samples. In the simulation, second-phase particles were assumed to be randomly distributed in the initial microstructures and the Zener drag effect of particles on Goss grain boundaries was assumed to be selectively invalid because of the unique properties of Goss grain boundaries. The simulation results suggest that normal growth of the matrix grains stagnates because of the pinning effect of particles on their boundaries. During the onset of abnormal grain growth, some Goss grains with concave boundaries in the initial microstructure grow fast abnormally and other Goss grains with convex boundaries shrink and eventually disappear.  相似文献   

16.
Nickel-based alloys exhibit excellent high-temperature strength and oxidation resistance; however, because of coarse grains and severe segregation in their welding joints, these alloys exhibit increased susceptibility to hot cracking. In this paper, to improve the hot-cracking resistance and mechanical properties of nickel-based alloy welded joints, sodium thiosulfate was used to simulate crystallization, enabling the nucleation mechanism under mechanical vibration to be investigated. On the basis of the results, the grain refinement mechanism during the gas tungsten arc welding (GTAW) of Inconel 601H alloy under various vibration modes and parameters was investigated. Compared with the GTAW process, the low-frequency mechanical vibration processes resulted in substantial grain refinement effects in the welds; thus, a higher hardness distribution was also achieved under the vibration conditions. In addition, the γ' phase exhibited a dispersed distribution and segregation was improved in the welded joints with vibration assistance. The results demonstrated that the generation of free crystals caused by vibration in the nucleation stage was the main mechanism of grain refinement. Also, fine equiaxed grains and a dispersed γ' phase were found to improve the grain-boundary strength and reduce the segregation, contributing to preventing the initiation of welding hot cracking in nickel-based alloys.  相似文献   

17.
The microstructures of low carbon steel before, during and after rolling deformation of each stand were observed using optical microscope. The result showed that the microstructures were very fine after six passes rolling deformation. The effect of the first stand reduction on microstructure refinement was very distinct. During the rolling process, with the increase of the accumulated strain, the microstructures would further refine, and the density of dislocation would increase at the same time. In continuous casting thin slabs and each finishing stand, lots of observed precipitates were mainly Al2O3 and MnS along the grain boundaries or in grains, which played an important role in the mechanical properties of the hot strips of low carbon steel produced by CSP (compact strip production) technology.  相似文献   

18.
Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds (IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17 (γ) and Al3Mg2 (β) at the welding zone with a thickness (< 3.5 µm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.  相似文献   

19.
Through molecular dynamics(MD)simulation,the dependencies of temperature,grain size and strain rate on the mechanical properties were studied.The simulation results demonstrated that the strain rate from 0.05 to 2 ns~(–1 )affected the Young’s modulus of nickel nanowires slightly,whereas the yield stress increased.The Young’s modulus decreased approximately linearly;however,the yield stress firstly increased and subsequently dropped as the temperature increased.The Young’s modulus and yield stress increased as the mean grain size increased from 2.66 to6.72 nm.Moreover,certain efforts have been made in the microstructure evolution with mechanical properties association under uniaxial tension.Certain phenomena such as the formation of twin structures,which were found in nanowires with larger grain size at higher strain rate and lower temperature,as well as the movement of grain boundaries and dislocation,were detected and discussed in detail.The results demonstrated that the plastic deformation was mainly accommodated by the motion of grain boundaries for smaller grain size.However,for larger grain size,the formations of stacking faults and twins were the main mechanisms of plastic deformation in the polycrystalline nickel nanowire.  相似文献   

20.
The microstructure and room-temperature tensile properties of Ti14, a new α+Ti2Cu alloy, were investigated after conventional forging at 950℃ and semi-solid forging at 1000 and 1050℃, respectively. Results show that coarse grains and grain boundaries are obtained in the semi-solid alloys. The coarse grain boundaries are attributed to Ti2Cu phase precipitations occurred on the grain boundaries during the solidification. It is found that more Ti2Cu phase precipitates on the grain boundaries at a higher semi-solid forging temperature, which forms precipitated zones and coarsens the grain boundaries. Tensile tests exhibit high strength and low ductility for the semi-solid forged alloys, especially after forging at 1000℃. Fracture analysis reveals the evidence of ductile failure mechanisms for the conventional forged alloy and cleavage fracture mechanisms for the alloy after semi-solid forging at 1050℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号