首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstructural observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio (r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geometry value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001}〈110〉 and Goss {110}〈001〉 orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H{001}〈110〉 orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.  相似文献   

2.
The effect of particle size distribution on the microstructure,texture,and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties,microstructure,and texture of the alloy.The results show that the particle size distribution influences the microstructure and the final mechanical properties but only slightly influences the recrystallization texture.After the pre-aging treatment and natural aging treatment(T4 P treatment),in contrast to the sheet with a uniform particle size distribution,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids exhibits higher strength and a somewhat lower plastic strain ratio(r) and strain hardening exponent(n).After solution treatment,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids possesses a finer and slightly elongated grain structure compared with the sheet with a uniform particle size distribution.Additionally,they possess almost identical weak recrystallization textures,and their textures are dominated by CubeND {001}310 and P {011}122 orientations.  相似文献   

3.
The effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties, microstructure, and texture of the alloy. The results show that the particle size distribution influences the microstructure and the final mechanical properties but only slightly influences the recrystallization texture. After the pre-aging treatment and natural aging treatment (T4P treatment), in contrast to the sheet with a uniform particle size distribution, the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids exhibits higher strength and a somewhat lower plastic strain ratio (r) and strain hardening exponent (n). After solution treatment, the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids possesses a finer and slightly elongated grain structure compared with the sheet with a uniform particle size distribution. Additionally, they possess almost identical weak recrystallization textures, and their textures are dominated by CubeND {001}<310> and P {011}<122> orientations.  相似文献   

4.
The microstructure and texture evolution during continuous cooling hot deformation(CCHD) in a near β titanium alloy, named Ti-7Mo-3Nb-3Cr-3Al(Ti-7333), were investigated by using the electron backscattered diffraction(EBSD). The results indicate that the precipitation of secondary α phase was restricted by CCHD, and the morphology of primary α phase nearly had no change with the deformation and temperature drop. In contrast, βphase underwent more deformation and the grains tended to refine. This may be due to the dynamic recrystallization(DRX) of β phase, including continuous dynamic recrystallization(CDRX) and discontinuous dynamic recrystallization(DDRX). In addition, the textures of {110} 110 , {225} 520 and{115} 123 transformed to {100} 110 and {001} 100 during CCHD. Among these, the η-fiber component of {001} 100 was the dominant deformation texture in the deformed Ti-7333 alloy. Finally,continuous cooling has an important effect on the work hardening and softening during CCHD, contributing to the different flow behaviors at different cooling rates.  相似文献   

5.
The influences of plastic deformation, aging treatment, and alloying elements on the texture of Cu-Cr-Zr alloys were ex- plored. The texture component and intensity of Cu-Cr-Zr alloys under various working conditions after aging treatment were characterized using the orientation distributing function (ODF). The influence of Zr content on the texture of Cu-Cr-Zr alloys was also analyzed. The reduction pass and deformation level were primary factors influencing the texture. Rolling texture appeared in a rolled plate and the fibrous textures of {111} and {001} were detected after 80% deformation. Fibrous texture with a main constituent of {111} improved the tensile strength of the alloy wire. The texture contents of {110}〈331〉 and {110}〈112〉 were predominated, whereas, those of {113}〈332〉 and {112}〈111〉 were in the minority in the Cu-Cr-Zr alloy with a higher Zr content (〉0.5wt%). However, in the samples with a lower Zr content (〈0.1wt%), the texture contents of {113}〈332〉, {112}〈111〉, and {111}〈110〉 were in the majority.  相似文献   

6.
Microstructure and texture evolution in commercial-purity Zr 702 during cold rolling and annealing was investigated by optical microscopy, transmission electron microscopy, and X-ray diffraction. The results showed that crystallographic slip was the predominant deformation mechanism in the early stage of deformation. Deformation twins started to form when the rolling reduction was larger than 38.9%; both the dislocation density and the number of twins increased with increasing rolling reduction. The initial texture of the Zr 702 plate consisted of the basal fiber component. During cold rolling the strength of the basal fiber first decreased and then increased with increasing rolling reduction. The cold-rolled sheets were fully recrystallized after being annealed at 550°C. The recrystallization temperature and the size of recrystallized grains decreased with increasing rolling reduction. A larger rolling reduction resulted in a higher grain growth rate when the annealing temperature increased from 550°C to 700°C. The recrystallization texture was characterized by a major basal fiber and a minor {0113}<2110> component. The strength of the recrystallization texture increased with increasing rolling reduction.  相似文献   

7.
The microstructure evolution and mechanical properties of a hot-rolled Ti-5.1 Al-2.5 Cr-0.5 Fe-4.5 Mo-1.1 Sn-1.8 Zr-2.9 Zn titanium alloy sheet along the thickness direction were investigated.The results indicated that the hotrolled titanium alloy sheet presented different microstructures along the thickness direction owing to the uneven distribution of stress and temperature during the hot rolling.The grains in central region underwent a larger deformation,leading to relative complete grain fragmentation and the formation of fine grains.During the air cooling process followed by hot rolling,the fraction of a phase precipitated in the central region was lower than that in the regions near the surface of the sheet.During hot rolling process,more deformation energy transformed to thermal energy and lower cooling rate in the central region promoted the α→β phase transformation,resulting in the increasing of the dynamic recrystallization in the β phase.By contrast,the dynamic recrystallization for a phase decreased.Distinct {0001}_α and {001}_β textures were observed,and these textures were markedly strengthened with the increasing distance from the central region.Due to the softening induced by dynamic recrystallization and the strengthening by concentrated dislocations,the surface of the sheet exhibits highest yield strength and lowest elongation.  相似文献   

8.
In accordance with experimental results about the annealing microstructure and texture of cold-rolled deepdrawing sheet based on the compact strip production (CSP) process, a two-dimensional cellular automation simulation model, considering real space and time scale, was established to simulate recrystallization and grain growth during the actual batch annealing process. The simulation results show that pancaked grains form during recrystallization. {111} advantageous texture components become the main parts of the recrystallization texture. After grain growth, the pancaked grains coarsen gradually. The content of {111} advantageous texture components in the annealing texture increases from 55vol% to 65vol%; meanwhile, the contents of {112}〈110〉 and {100}〈110〉 texture components decrease by 4% and 8%, respectively, compared with the recrystallization texture. The simulation results of microstructure and texture evolution are also consistent with the experimental ones, proving the accuracy and usefulness of the model.  相似文献   

9.
The texture of 80% cold rolling CuZn ordered alloy was investigated. The development of rolling texturein 50%Cu-50%Zn(at.) alloy has been characterized by a inhomogenous {111} fiber texture with strong {111} <112> component, which is significantly different from the conventional Cu-Zn alloys. The main characters of cold rolling textures in ordered CuZn alloy are obviously similar to that in IF steel with bcc structure or ordered Fe3Al-based alloys with imperfect B2 structure. From the rolling texture obtained by experiments and simulations,it can be estimated that main deformation mechanism are characterized by the activation of slip systems with <111> Burgers vector in CuZn ordered alloy.  相似文献   

10.
In order to further investigate how cold rolling texture is produced in an extra low-carbon and high strength bake-hardening sheet steel (for short, hereafter, coiled ELC-BH sheet) with r value as high as 2.67, texture change in texture pretreatment and its effects on the cold rolling texture are researched by means of Orientation Distribution Funchon (ODf) method. Experimental results show that the cold rolling texture which Produces very strong {111} annealing texture actually is caused by texture change in the texture pretreatment, and the strong {111} texture obtained rough this texture pretreatment is an essential condition of engendering the cold rolling texture, while the stability of {111} texture components in cold rolling is a sufficient condition of emerging thes one.  相似文献   

11.
Grain microtexture evolution in twin-roll cast AA8006 alloy sheets subjected to different treatments was investigated using electron backscatter diffraction. The textures of rolling-transverse and normal-transverse sections were characterized in original as-cast twin-roll casting and cold-rolled samples as well as samples homogenized at 500℃ for 8 h and at 580℃ for 4 h. It is found that grains on both the rolling-transverse and normal-transverse sections of cold-rolled samples are made finer by rolling deformation and coarsened after homogenization. Annealing temperature has a stronger effect on the microstructural evolution than annealing time. The grain growth direction is parallel to the normal-transverse section, while grain deformation is more stable on the rolling direction than on the normal direction. The rolling orientations display more obvious anisotropy on the normal-transverse sections than on the rolling-transverse sections. Grain recrystallization and growth occur much easier on the normal-transverse section than on the rolling-transverse section for samples homogenized at 500℃ for 8 h. A special misorientation relationship between cold deformation texture, such as S orientation {123}<634> and cube orientation <110>‖Xaxis[cubic], and recrystallization texture after homogenization, such as R orientation {124}<211> and P orientation {011}<122>, is observed.  相似文献   

12.
A low carbon steel with Cr addition of 0.46wt% combined with trace elements of Mn and Ti was studied. The apparent activation energy of deformation and the hot deformation equation of the steel in the ferritic range were determined by means of single hot compression tests. The hot-rolled strip of 3 mm in thickness rolled in the ferritic range was obtained using a laboratory hot rolling mill. The mechanical properties show that the values of yield strength and ultimate tensile strength are 230 and 330 MPa, respectively, and the elongation is 33%. The average r-value is 1.1. Large polygonal ferrite recrystallization grains with about 40 grn in size and the strong { 111 } recrystallization texture can be obtained in the hot-rolled strip.  相似文献   

13.
X-ray diffraction (XRD) was employed to analyze the texture evolution of commercial pure (CP) Ti during cold rolling and recrystallization annealing. The texture components were measured by electron backscattered diffraction (EBSD) after recrystallization annealing. The CP Ti tends to form a texture with the basal pole tilted 30°-40° away from the normal direction toward the transverse direction. The texture of the initial hot-rolled plate can be classified into three kinds, i.e., the pyramid texture (1013)[5230] and (2021)[1015], the basal plane texture (0001)[2110], and the stronger prism texture (1120)[0001]. After cold rolling and annealing (700℃, 60 min), the main texture components are the cold-rolled texture (1125)[1123] and the recrystallized texture (1013)[5230]. The texture (2021)[1015] is inherited from the texture of the initial hot-rolled plate with the decrease of orientation density gradually. The volume contents of the cold-rolled texture {2115} <0110> and the recrystallized texture {1013} <1210> are calculated by EBSD. After recrystallization annealing, the specimen is rich in the recrystallized texture and inherits some of texture components from the cold-rolled texture. When the annealing time is prolonged, the anisotropic value decreases.  相似文献   

14.
A plastic deformation model for bcc metals is proposed in consideration of reaction stresses.The shear strains and the corresponding reaction stresses induced by the activation of dislocations are calculated in the model,which will influence the following dislocation activation.The rolling texture in bcc metals is simulated up tp 80% reduction,whille the ratio of critcal resolved shear stresses between the dislocations slippingon the {110}and{112}planes is chosen as 0.95.The corresponding calculation is also conducted with the activation of second dislocation,if the difference between the orientation factor of the two dislocations with maximal orientation factors is lower than 5%.It is shown that the simulated texture is closer to that of the 80% rolled interstitial free steels than other modeling.It is believed that the new model can give more attention to both of the strain and stress continuities during the plastic deformation of polycrystalline metals,and therefore approaches closer to the real deformation process in bcc metals.  相似文献   

15.
A two-dimensional cellular automaton method was used to simulate grain growth during the recrystallization annealing of deep-drawing sheet Stl5, taking the simulated result of recrystallization and the experimental result of the annealing texture of deepdrawing sheet St15 as the initial condition and reference. By means of computer simulation, the microstructures and textures of different periods of grain growth were predicted. It is achieved that the grain size, shape and texture become stable after the grain growth at a constant temperature of 700°C for 10 h, and the advantaged texture components {111 }<110> and {111 }<112> are dominant.  相似文献   

16.
The influence of various slip system combination models on crystal plasticity finite element simulation of Ni Ti shape memory alloy subjected to uniaxial compression deformation is investigated according to three combinations of slip systems, including combination of {010}100and {110}111slip modes, combination of {110}100and {110}111slip modes and combination of {110}100, {010}100and {110}111slip modes, which consist of 18, 18 and 24 slip systems, respectively. By means of simulating mechanical response,strain distribution, stress distribution and Schmid factor, it can be found that in terms of simulation accuracy,combination of {110}100and {110}111slip modes is in good agreement with combination of {110}100,{010}100and {110}111slip modes. The contribution of {110}100slip mode to plastic strain is primary in plastic deformation of Ni Ti shape memory alloy, whereas {010}100slip mode, which makes small contribution to plastic deformation, can be regarded as the unfavorable slip mode. In the case of large plastic strain, the {010}100slip mode contributes to the formation of(001) [010] texture component, while {110}100and {110}111slip modes facilitate the formation of γ-fibre(111) texture.  相似文献   

17.
The texture of a rolled AA3104 aluminum sheet was measured by the X-ray transmission method. The Lankford values or r values (ratio of plastic strain) and yield strengths in directions of 0, 15, 30, 45, 60, 75, and 90° to RD (rolling direction) of the sheet were tested during tensile loading at a strain of 2%. r values were predicted by the Sachs model and the reaction stress model in consideration of the measured texture. The simulated results indicate that r values calculated by the Sachs model are more exactly approaching with the experimental values on the whole than those predicted by the reaction stress model. The deformation behavior of the AA3104 aluminum sheet reveals characteristic predicted by the Sachs model, which should be resulted from the sheet geometry different from bulk material as well as the low tensile deformation degree.  相似文献   

18.
Single cold rolling and double cold rolling were applied to hot rolled strips with different reduction ratios. The evolutions of { 100}, { 111} and Goss face texture during double rolling were investigated by comparing the orientation distribution function (ODF) of the double rolled sample with that of the single rolled one. The double cold rolling texture is characterized by a higher γ-texture and a lower α-texture, and the { 111}〈112〉 component is improved remarkably. Based on the TEM observation and mechanical properties test, it is found that the reduction ratio assignment significantly affects the texture variation, as-annealing microstructures, and properties of the double cold rolled samples. These results may provide a theoretical guide for the industrial production of double cold rolled IF steel.  相似文献   

19.
In this work,a series of specimens was prepared by the casting method.Sharp cube-textured substrates were processed by heavy cold rolling and recrystallization annealing(i.e.,the rolling-assisted biaxially textured substrates(RABi TS) method).Both the rolling and the recrystallization texture in the alloy tapes were investigated by X-ray diffraction and electron back-scatter diffraction,respectively.The results showed that a strong copper-type deformation texture was obtained in the heavy cold-rolled substrate.In addition,the recrystallization annealing process was found to be very important for the texture transition in the Cu–Ni alloy substrates.The cube texture content in the Cu60 Ni40 alloy substrates reached 99.7%(≤10°) after optimization of the cold-rolling procedure and the recrystallizing heat-treatment process,whereas the content of low-angle grain boundaries(from 2° to 10° misorientation) in the substrate reached 95.1%.  相似文献   

20.
The microstructure/texture evolution(MTE,for short) map and processing map of a new near a titanium alloy Ti65 were constructed in order to investigate the workability and microstructure evolution of hot deformation.The processing map illustrated four domains,two summit domains and two instability domains.The morphologies of the a phase changed from the spheroidization(α+β region) to the deformed and elongated β grains(near the βtransus temperature T_β),and then to the obvious dynamic recrystallization(DRX)(β region) with the temperature rising from 930 ℃ to 1140℃.Deformation in the α+β field mainly generated the texture component with [0001]or [0223] parallel to radial directions(RDs).While deformation in the β phase field formed two types of texture component with [0001] parallel to RDs and [2110] parallel to compression direction.An optimized processing map was summarized by overlaying the macro-instability map on the original processing map,and the instability domain of Ti65 alloy was confirmed in the area with the strain rate higher than 0.01 s~(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号