首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of austenitic cast iron samples with different compositions were cast and a part of nickel in the samples was replaced by manganese for economic reason. Erosion-corrosion tests were conducted under 2wt% sulfuric acid and 15wt% quartz sand. The results show that the matrix of cast irons remains austenite after a portion of nickel is replaced with manganese. (Fe,Cr)3C is a common phase in the cast irons, and nickel is the main alloying element in high-nickel cast iron; whereas, (Fe,Mn)3C is observed with the increased manganese content in low-nickel cast iron. Under erosion-corrosion tests, the weight-loss rates of the cast irons increase with increasing time. Wear plays a more important role than corrosion in determining the weight loss. It is indicated that the processes of weight loss for the cast irons with high and low nickel contents are different. The erosion resistance of the cast iron containing 7.29wt% nickel and 6.94wt% manganese is equivalent to that of the cast iron containing 13.29wt% nickel.  相似文献   

2.
A new route of impurity rejection to remove ferric iron from a synthetic nickel leach solution was introduced, which simulated the chemical composition of a typical acid leach solution of nickel laterites under atmospheric pressure. The synthetic solution underwent a stepwise neutralization process, with each step adopting different pH value-temperature combinations. In a conventional nickel atmospheric leach (AL) process, the nickel loss could be as high as 10wt%, which was a longstanding issue and prevented this process from commercialization. The new impurity rejection route is the first step towards resolving this issue. The results show that, the best neutralization performance is achieved at the nickel loss of 3.4wt% in the neutralization scheme that employs ethylenediaminetetraacetic acid as a nickel stabilizer (pH: 1.3–3.5; temperature: 95–70℃)  相似文献   

3.
Mg–8Li–3Al+xCe alloys (x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg–8Li–3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B–117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg–8Li–3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.  相似文献   

4.
Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%–10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.  相似文献   

5.
Using sand moulds for step-shape casting tests and different silicon percentage of nodular cast iron it was possible to separate structural variations produced during freezing from those occurring at Ac1 transformation temperature. The results show that an increase in silicon content leading to different variation in the matrix structure> leads to a changing mechanical properties of nodular cast irons. Tensile strength and elongation of obtained as-cast nodular cast iron with the composition of 3.9%C, 3.2%Si, 0.5%Mn are maximum of about 524.5N/mm2 and 19.8% accordingly. In the same nodular cast iron, but only with 0.1% Mn the silicon addition first increases after decreases elongation, impact toughness and hardness. But tensile strength changes to the opposite side.  相似文献   

6.
The river sand, which is a non-pozzolanic material, was ground into 3 different particle sizes. Portland cement type I was replaced by the ground river sands at 10wt%–40wt% of binder to cast mortar. Compressive strengths of mortar were investigated and the filler effect of different fine particles of sand on the compressive strength of mortar was evaluated. The results show that the compressive strength of mortar contributed from the filler effect of smaller particles is higher than that of the coarser ones. The difference in compressive strength of mortar tends to be greater as the difference in ground river sand fineness increases. The results also suggest that ASTM C618 specification is not practically suitable for specifying pozzolan in concrete since the strength activity index of mortar containing ground river sand (high crystalline phase) with 33.8wt% of particles retained on a 45-μm sieve can pass the strength requirement.  相似文献   

7.
Ferronickel enrichment and extraction from nickel laterite ore were studied through reduction and magnetic separation. Reduction experiments were performed using hydrogen and carbon monoxide as reductants at different temperatures (700–1000°C). Magnetic separation of the reduced products was conducted using a SLon-100 cycle pulsating magnetic separator (1.2 T). Composition analysis indicates that the nickel laterite ore contains a total iron content of 22.50wt% and a total nickel content of 1.91wt%. Its mineral composition mainly consists of serpentine, hortonolite, and goethite. During the reduction process, the grade of nickel and iron in the products increases with increasing reduction temperature. Although a higher temperature is more favorable for reduction, the temperature exceeding 1000°C results in sintering of the products, preventing magnetic separation. After magnetic separation, the maximum total nickel and iron concentrations are 5.43wt% and 56.86wt%, and the corresponding recovery rates are 84.38% and 53.76%, respectively.  相似文献   

8.
Accelerated corrosion tests of the 7005-T4 aluminum alloy were conducted to determine a suitable service life prediction method by using alternating wet-dry cycles in three kinds of solutions. The morphology and composition analysis of the corrosion product revealed that slight corrosion occurred on the surfaces of the samples immersed in a 0.25wt% Na2S2O8 solution. However, pitting corrosion occurred on the surfaces of the samples immersed in a 3.5wt% NaCl solution, whereas exfoliation corrosion occurred on the surfaces of the samples immersed in a mixture of 0.25wt% Na2S2O8 and 3.5wt% NaCl solutions. A power exponent relationship was observed between the mass loss and exposure time of the 7005-T4 aluminum alloy immersed in the three kinds of solutions. In the mixture of 0.25wt% Na2S2O8 and 3.5wt% NaCl solutions, the mass loss of the aluminum alloy yielded the maximum value. Based on the calculation of the correlation coefficients, the alternating wet-dry procedure in a 3.5wt% NaCl solution could be used to predict the corrosion behavior of 7005-T4 aluminum alloy exposed in the atmosphere of Qingdao, China. The prediction model is as follows:T=104.28·t0.91, where T is the equivalent time and t is the exposure time.  相似文献   

9.
Four low-alloy hull steels with different alloy elements were selected. Their susceptibility to pitting corrosion was compared by means of electrochemical polarization test. The inclusions in the steels and their pitting corrosion characteristics were studied by an electron probe micro-analyzer (EPMA). The results indicate that some inclusions are the main sources of pitting corrosion.The susceptibility of nickel-chromium steel to pit initiation is less than that of manganese steel. Under the same conditions, nickelchromium steel is easier to passivate than manganese steel, and the passive films on nickel-chromium steel surface are more stable than that on manganese steel. In low-alloy steels, the higher the contents of nickel and chromium, the lower the critical passive pH value. In the same kind of steel, multi-phase inclusions containing sulfide are easier to initiate pitting corrosion than other inclusions.  相似文献   

10.
Large scale utilization is still an urgent problem for waste red mud with a high content of alkaline metal component in the future. Laterite ores especially the saprolitic laterite ore are one refractory nickel resource, the nickel and iron of which can be effectively recovered by direct reduction and magnetic separation. Alkaline metal salts were usually added to enhance reduction of laterite ores. The feasibility of co-reduction roasting of a saprolitic laterite ore and red mud was investigated. Results show that the red mud addition promoted the reduction of the saprolitic laterite ore and the iron ores in the red mud were co-reduced and recovered. By adding 35wt% red mud, the nickel grade and recovery were 4.90wt% and 95.25wt%, and the corresponding iron grade and total recovery were 71.00wt% and 93.77wt%, respectively. The X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive spectroscopy (SEM-EDS) analysis results revealed that red mud addition was helpful to increase the liquid phase and ferronickel grain growth. The chemical compositions “CaO and Na2O” in the red mud replaced FeO to react with SiO2 and MgSiO3 to form augite.  相似文献   

11.
Polarization curves and mass losses of SAF3207 hyper-duplex stainless steel under various conditions were measured. The damaged surfaces after erosion-corrosion tests were characterized by scanning electron microscopy. The results showed that an increase in flow velocity could enhance the electrochemical corrosion and consequently decrease the passivation properties of the steel. The erosion-corrosion damage of the samples increased substantially when the flow velocity exceeded the critical value of 4 m·s-1. The mass loss rate increased as the sand content increased, reaching a maximum at 7wt% sand content, corresponding to the most severe electrochemical corrosion damage. When the sand content was increased further, however, the mass loss rate decreased and then tended stable. The mass loss was divided into incubation, sustained, and stationary periods, with a maximum mass loss rate of 12.97 g·h-1·m-2 after an erosion period of 2.5 h. The erosion-corrosion mechanism was investigated in detail.  相似文献   

12.
Inspired by the curved branches of fractal trees, hooked Ni–Fe fibers were grown in situ in Ni–Fe composite coatings on a spheroidal graphite cast iron substrate. These hooked Ni–Fe fibers exhibited inclination angles of about 39°, which was in accordance with the theoretical prediction of 37°. Ni–Fe nanostructures self-assembled to form dendrites and evolved into hooked fibers by an oriented attachment reaction. The orientation rotation of Ni–Fe nanostructures played an important role in the growth of curved hooked Ni–Fe fibers. During sliding wear tests, the volume loss of the spheroidal graphite cast iron substrate was 2.2 times as large as that of the Ni–Fe coating reinforced by hooked fibers. The good load-transferring ability of hooked Ni–Fe fibers led to an improvement in their wear properties during wear tests.  相似文献   

13.
A low-alloy gray cast iron containing hard carbide-forming elements, such as vanadium and chromium, was cast by sand mould casting. Its wear resistance was compared with that of an untreated gray cast iron. Three different loading conditions were tested under a constant speed. It was observed that this alloy could reduce the wear loss of standard gray cast iron by up to 89%, which was much greater than what was achieved in previous reports. Scanning electron microscopy (SEM) was used to determine the predominant wear mechanism of both the alloys. In a mild wear regime, the oxidative mechanism was predominant; however, in a severe wear regime, this mechanism was not predominant and the adhesive mechanism was involved. EDX analysis was conducted to evaluate the quantitative amounts of elements in the tribochemical films formed on the wear tracks.  相似文献   

14.
Titanium produces different compounds in gray iron. In order to determine their characteristics, a scanning electron microscope, an energy dispersive X-ray spectroscopy, and an optical microscopy were used to analyze the morphology, distribution, and composition of titanium-containing compounds in metal- Iographic specimens and machined surfaces in four gray irons. The results show that the titanium-containing compounds in the gray irons are complex compounds containing V, Nb, Mn, S, and other metals, depending on the concentration of these elements in the iron. The number of titanium-containing compounds increases with increasing Ti content in the gray iron. Most of the titanium-containing compounds are located in the pearlite matrix, with some in the steadite and carbides. The results suggest that titanium-containing compounds reduce tool lifetime.  相似文献   

15.
Corrosion properties of bio-oil and its emulsions with diesel   总被引:2,自引:1,他引:1  
Bio-oil is a new liquid fuel but very acidic. In this study, bio-oil pyrolyzed from rice husk and two bio-oil/diesel emulsions with bio-oil concentrations of 10 wt% and 30 wt% were prepared. Tests were carried out to determine their corrosion properties to four metals of aluminum, brass, mild steel and stainless steel at different temperatures. Weight loss of the metals immersed in the oil samples was recorded. The chemical states of the elements on metal surface were analyzed by X-ray photoelectron spectroscopy (XPS). The results indicated that mild steel was the least resistant to corrosion, followed by aluminum, while brass exhibited slight weight loss. The weight loss rates would be greatly enhanced at elevated temperatures. Stainless steel was not affected under any conditions. After corrosion, in- creased organic deposits were formed on aluminum and brass, but not on stainless steel. Mild steel was covered with many loosely attached corrosion materials which were easy to be removed by washing and wiping. Significant metal loss was detected on surface of aluminum and mild steel. Zinc was etched away from brass surface, while metallic copper was oxidized to Cu20. Increased Cr203 and NiO were presented on surface of stainless steel to form a compact passive protection film. The two emulsions were less corrosive than the bio-oU. This was due to the protection effect of diesel. Diesel was the continuous phase in the emulsions and thus could limit the contact area between bio-oil and metals.  相似文献   

16.
The microstructural properties and electrochemical performance of zinc (Zn) sacrificial anodes during strain-induced melt activation (SIMA) were investigated in this study. The samples were subjected to a compressive ratio of 20%–50% at various temperatures (425–435°C) and durations (5–30 min). Short-term electrochemical tests (anode tests) based on DNV-RP-B401 and potentiodynamic polarization tests were performed in 3.5wt% NaCl solution to evaluate the electrochemical efficiency and corrosion behavior of the samples, respectively. The electrochemical test results for the optimum sample confirmed that the corrosion current density declined by 90% and the anode efficiency slightly decreased relative to that of the raw sample. Energy-dispersive X-ray spectroscopy, scanning electron microscopy, metallographic images, and microhardness profiles showed the accumulation of alloying elements on the boundary and the conversion of uniform corrosion into localized corrosion, hence the decrease of the Zn sacrificial anode’s efficiency after the SIMA process.  相似文献   

17.
In this study, the effect of melting temperature on the microstructural evolutions, behavior, and corrosion morphology of Hadfield steel in the casting process is investigated. The mold was prepared by the sodium silicate/CO2 method, using a blind riser, and then the desired molten steel was obtained using a coreless induction furnace. The casting was performed at melting temperatures of 1350, 1400, 1450, and 1500℃, and the cast blocks were immediately quenched in water. Optical microscopy was used to analyze the microstructure, and scanning electron microscopy (SEM) and X-ray diffractrometry (XRD) were used to analyze the corrosion morphology and phase formation in the microstructure, respectively. The corrosion behavior of the samples was analyzed using a potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) in 3.5wt% NaCl. The optical microscopy observations and XRD patterns show that the increase in melting temperature led to a decrease of carbides and an increase in the austenite grain size in the Hadfield steel microstructure. The corrosion tests results show that with increasing melting temperature in the casting process, Hadfield steel shows a higher corrosion resistance. The SEM images of the corrosion morphologies show that the reduction of melting temperature in the Hadfield steel casting process induced micro-galvanic corrosion conditions.  相似文献   

18.
A study of biocompatibility and corrosion of both metallic magnesium(Mg) and a magnesium alloy containing 1% calcium(Mg–Ca) were investigated in in vitro culture conditions with and without the presence of bone marrow derived human mesenchymal stem cells(h MSCs).Chemical analysis of the degraded samples was performed using XRD and FEGSEM. The results from the XRD analysis strongly suggested that crystalline phase of magnesium carbonate was present on the surface of both the Mg and Mg–Ca samples. Flame absorption spectrometry was used to analyse the release of magnesium and calcium ions into the cell culture medium. Magnesium concentration was kept consistently at a level ranging from 40 to 80 m M for both Mg and Mg–Ca samples. No cell growth was observed when in direct contact with the metals apart from a few cells observed at the bottom of culture plate containing Mg–Ca alloy. In general, in vitro study of corrosion of Mg–Ca in a biologicallysimulated environment using cell culture medium with the presence of h MSCs demonstrated close resemblances to in vivo corrosion. Although in vitro corrosion of Mg–Ca revealed slow corrosion rate and no immediate cytotoxicity effects to h MSCs, its corrosion rate was still too high to achieve normal stem cell growth when cells and alloys were cultured in vitro in direct contact.  相似文献   

19.
Recent experimental investigations suggest that the martensite formed by quenching carbon steels(0.2–1.26 mass %C) are composed of twins and nanoscale ω particles in twin boundaries, rather than carbon supersaturated uniform solutions. In order to probe the microstructure of the martensite with ultrahigh carbon content, a novel strategy is employed in the present study to obtain ultrahigh carbon martensite(approximate2.1 mass %C) by quenching ductile cast iron. The microstructure of the martensite was intensively characterized by high resolution transmitting electron microscopy. It is indicated that the microstructure of the ultrahigh carbon martensites is composed of ultrafine {112} 111 -type twins and high-density nano-scaled ω particles embedded in twin boundaries. These ω nanoparticles in twin boundaries could remarkably impede the deformation of the movement of the nanotwins in martensites, leading to poor ductility and strength of the quenched ductile cast iron. These findings not only reveal the substructures of ultrahigh carbon martensite, but also enhance the understanding of the mechanical behavior of high carbon steels and ductile cast irons.  相似文献   

20.
Duplex stainless steels (DSSs) used in subsea structures and desalination industries require high corrosion and erosion resistance as well as excellent mechanical properties. The newly introduced cast duplex grade ASTM A890 7A has a unique composition and is expected to have a much better resistance to corrosion and erosion compared with the super-duplex grades 5A and 6A. This work is a comparative study of the mechanical properties, corrosion, and erosion?corrosion resistance of super-duplex grades 5A and 6A and the hyper-duplex grade 7A. The three DSSs exhibited equiaxial austenite islands in the ferrite matrix and balanced phase ratios. The hardness of the grade 7A was nearly 15% higher than those of the super-duplex grades, which is attributed to the effect of the higher contents of W and Mn in 7A. The impact toughness of grade 7A was found to be lower than those of the super-duplex grades due to the carbide precipitation resulting from the partial substitution of Mo with W. The oxide layer strengthening effect of rare earth elements and the higher pitting resistance equivalent number (PREN) of grade 7A resulted in higher corrosion resistance. The harder and more passive grade 7A showed a 35% lower material loss during erosion?corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号