首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolutions of phase constitutions and mechanical properties of a β-phase Ti–36Nb–5Zr(wt%) alloy during thermo-mechanical treatment were investigated. The alloy consisted of dual(β t α″) phase and exhibited a double yielding phenomenon in solution treated state. After cold rolling and subsequent annealing at 698 K for 20 min, an excellent combination of high strength(833 MPa) and low modulus(46 GPa) was obtained. The high strength can be attributed to high density of dislocations, nanosized α phase and grain refinement. On the other hand, the low Young's modulus originates from the suppression of chemical stabilization of β phase during annealing, which guarantees the low β-phase stability. Furthermore, the single-crystal elastic constants of the annealed Ti–36Nb–5Zr alloy were extracted from polycrystalline alloy using an in-situ synchrotron X-ray technique. The results indicated that the low shear modulus C44 contributes to the low Young's modulus for the Ti–36Nb–5Zr alloy, suggesting that reducing C44 through thermo-mechanical treatment might be an efficient approach to realize low Young's modulus in β-phase Ti alloys. The results achieved in this study could be helpful to elucidate the origin of low modulus and sheds light on developing novel biomedical Ti alloys with both low modulus and high strength.  相似文献   

2.
A high content silicon aluminum alloy(Al–25Si–4 Cu–1Mg) coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying. The morphology and microstructure of the coating were observed and analyzed. The hardness, elastic modulus, and bonding strength of the coating were measured. The wear resistance of the coating and 2A12 aluminum alloy was studied by friction and wear test. The results indicated that the coating was compact and the porosity was only 1.5%. The phase of the coating was mainly composed of α-Al and β-Si as well as some hard particles(Al_9Si,Al_(3.21)Si_(0.47), and CuAl_2). The average microhardness of the coating was HV 242, which was greater than that of 2 A12 aluminum alloy(HV 110). The wear resistance of the coating was superior to 2A12 aluminum alloy. The wear mechanism of the 2A12 aluminum alloy was primarily adhesive wear, while that of the coating was primarily abrasive wear. Therefore, it is possible to prepare a high content silicon aluminum alloy coating with good wear resistance on an aluminum alloy by supersonic plasma spraying.  相似文献   

3.
《矿物冶金与材料学报》2020,27(9):1287-1294
A high content silicon aluminum alloy (Al–25Si–4Cu–1Mg) coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying. The morphology and microstructure of the coating were observed and analyzed. The hardness, elastic modulus, and bonding strength of the coating were measured. The wear resistance of the coating and 2A12 aluminum alloy was studied by friction and wear test. The results indicated that the coating was compact and the porosity was only 1.5%. The phase of the coating was mainly composed of α-Al and β-Si as well as some hard particles (Al9Si, Al3.21Si0.47, and CuAl2). The average microhardness of the coating was HV 242, which was greater than that of 2A12 aluminum alloy (HV 110). The wear resistance of the coating was superior to 2A12 aluminum alloy. The wear mechanism of the 2A12 aluminum alloy was primarily adhesive wear, while that of the coating was primarily abrasive wear. Therefore, it is possible to prepare a high content silicon aluminum alloy coating with good wear resistance on an aluminum alloy by supersonic plasma spraying.  相似文献   

4.
The effect of heat treatment on the microstructure and microhardness of a Ni–Fe based superalloy for700 °C advanced ultra-supercritical coalfi red power plants was investigated. Results showed that the main phases in the alloy were γ, γ′, MC and M_23C_6, and no harmful phase was observed in the alloy.M_23C_6-type carbides discretely distributed nearby grain boundaries as the alloy was aged at above840 °C. The microhardness decreased with increasing aging temperature. The coarsening of γ′ led to the increment of microhardness at 780 °C and 810 °C for a short aging time, and a signi fi cant decrease in microhardness after aging at 840 °C. The aging temperature had more signi fi cant role on the microstructure than holding time. Therefore, to obtain optimum strengthening effect for this alloy, the aging temperature should not exceed 810 °C.  相似文献   

5.
In the present work, an Al–0.66Mg–0.85Si–0.2Cu alloy with Zn addition was investigated by electron back scattering diffraction(EBSD), high resolution electron microscopy(HREM), tensile and Erichsen tests. The mechanical properties of the alloy after pre-aging met the standards of sheet forming. After paint baking, the yield strength of the alloy was improved apparently. GP(Ⅱ) zones and η’phases were formed during aging process due to Zn addition. With the precipitation of GP zones, β″ phases, GP(Ⅱ) zones and η’phases, the alloys displayed excellent mechanical properties.  相似文献   

6.
Dissimilar joining of Ti3Al-based alloy to Ni-based superalloy has been carried out using gas tungsten arc(GTA) welding technology with Ti–Nb and Ti–Ni–Nb filler alloys.The joint welded with the Ti–Nb filler alloy contained much less interfacial brittle phases than the one using the Ti–Ni–Nb filler alloy.The average room-temperature tensile strength of the joint welded with Ti–Nb was 202 MPa and the strength value of the one welded with Ti–Ni–Nb was 128 MPa.For both fillers,the weak links of the dissimilar joints were the weld/In718 interfaces.The presence of TiNi,TiNi3 and Ni3Nb intermetallic compounds in the joint welded with Ti–Ni–Nb induced microcracks at the weld/In718 interface and deteriorated the mechanical properties of the joint.And the adoption of the Ti–Nb filler alloy decreased the formation tendency of interfacial brittle phases to some extent and thus enhanced the tensile strength of the joint.  相似文献   

7.
The influence of heat treatment on the phase decomposition and the grain size of Co–10 at% Cu alloy were studied. Few samples were aged in a furnace for either 3 or 5 h and then quenched in iced water. The materials and phase compositions were investigated using energy dispersive spectrometry and X-ray diffraction techniques. X-ray diffraction analysis showed that the samples contained Co, Cu, Cu O, Co Cu2O3, Co Cu O2 phases in different proportions depending on the heat treatment regimes. The formation of dendrite Co phase rendered the spinodal decomposition while the oxidations prevent the initiation of the spinodal decomposition even for a deep long aging inside the miscibility gap.Since the Bragg reflections from different phases of Co–Cu alloy significantly overlap, the crystal structural parameters were refined with FULLPROF program. The shifts in the refined lattice constants(a, b and c), the space group and the grain size were found to be phase- and heat treatment-dependant. Two-dimensional computer simulations were conducted to study the phase decomposition of Co–Cu binary alloy systems.The excess free energy as well as the strain energy, without a priori knowledge of the shape or the position of the new phase, was precisely evaluated. The results indicate that the morphology and the shape of the microstructure agree with SEM observation.  相似文献   

8.
Ti_(50)Zr_(27)Cu_8Ni_4Co_3Fe_2Al_3Sn_3(at%) amorphous filler metal with low Cu and Ni contents in a melt-spun ribbon form was developed for improving mechanical properties of Ti–6Al–4V alloy brazing joint through decreasing brittle intermetallics in the braze zone. Investigation on the crystallization behavior of the multicomponent Ti–Zr–Cu–Ni–Co–Fe–Al–Sn amorphous alloy indicates the high stability of the supercooled liquid against crystallization that favors the formation of amorphous structure. The Ti–6Al–4V joint brazed with this Ti-based amorphous filler metal with low total content of Cu and Ni at 1203K for 900s mainly consists of α-Ti, β-Ti,minor Ti–Zr-rich phase and only a small amount of Ti_3Cu intermetallics, leading to the high shear strength of the joint of about 460 MPa. Multicomponent composition design of amorphous alloys is an effective way of tailoring filler metals for improving the joint strength.  相似文献   

9.
Precipitation reactions in the differential scanning calorimetry (DSC) of an Al-Cu-Mg-Ag alloy were identified by analyzing the results from hardness test, electrical conductivity test, and transmission electron microscope (TEM) examination. It is discovered that thermal effects can be identified through selected area electron diffraction and bright-field images. The reaction peaks around 171, 231, and 276℃ can be attributed to a structural rearrangement of coherent zones, to the precipitation of Ω phases, and to the precipitation of Ω and θ' and possible combination with the transition of θ'→θ, respectively. In addition, the hardness and electrical conductivity of the alloy change proportionately with the progression of reactions during the heating process. This phenomenon can be attributed to the evolution of the microstructure.  相似文献   

10.
The microstructure and electrochemical properties of Al–Cu–Fe alloys with the atomic compositions of Al_(65)Cu_(20)Fe_(15),Al_(78)Cu_7Fe_(15)and Al_(80)Cu_5Fe_(14)Si_1have been studied.The alloys were produced by induction melting of pure elements with copper mold casting.The microstructure of the alloys was analyzed by X-ray diffraction and high-resolution transmission electron microscopy.The formation of quasicrystalline phases in the Al–Cu–Fe alloys was confirmed.The presence of intermetallic phases was observed in the alloys after crystallization in a form of ingots and plates.The electrochemical measurements were conducted in 3.5%NaCl solution.The electronic structure of the alloys was determined by X-ray photoelectron spectroscopy.The post corrosion surface of the samples was checked using a scanning electron microscope equipped with the energydispersive X-ray detector.It was observed that the Al_(65)Cu_(20)Fe_(15)alloy had the highest corrosion resistance.The improved corrosion resistance parameters were noted for the plate samples rather than those in the as-cast state.And the hardness of the Al_(65)Cu_(20)Fe_(15)alloy was significantly higher than the other alloy samples.  相似文献   

11.
The effect of a homogenizing treatment on the hardness of as-cast Zn–Al–Cu alloys was investigated. Eight alloy compositions were prepared and homogenized at 350 ℃ for 180 h, and their Rockwell “B” hardness was subsequently measured. All the specimens were analyzed by X-ray diffraction and metallographically prepared for observation by optical microscopy and scanning electron microscopy. The results of the present work indicated that the hardness of both alloys (as-cast and homogenized) increased with increasing Al and Cu contents; this increased hardness is likely related to the presence of the θ and τ' phases. A regression equation was obtained to determine the hardness of the homogenized alloys as a function of their chemical composition and processing parameters, such as homogenization time and temperature, used in their preparation.  相似文献   

12.
Tungsten nanoparticle-strengthened Cu composites were prepared from nanopowder synthesized by a sol-gel method and in-situ hydrogen reduction. The tungsten particles in the Cu matrix were well-dispersed with an average size of approximately 100-200 nm. The addition of nanosized W particles remarkably improves the mechanical properties, while the electrical conductivity did not substantially decrease. The Cu-W composite with 6wt% W has the most comprehensive properties with an ultimate strength of 310 MPa, yield strength of 238 MPa, hardness of HV 108 and electrical conductivity of 90% IACS. The enhanced mechanical property and only a small loss of electrical conductivity demonstrate the potential of this new strategy to prepare W nanoparticle-strengthened Cu composites.  相似文献   

13.
The as-cast and as-extruded Mg–14 wt%Li–x Sr ( x=0.14, 0.19, 0.39 wt%) alloys were,respectively, prepared through a simple alloying process and hot extrusion. The effects of Sr addition on microstructure and aging behavior of the Mg–14 wt%Li–xSr alloys were studied. The results indicated that β(Li) and Mg2Sr were the two primary phases in the microstructures of both as-cast and as-extruded Mg–14 wt%Li–xSr alloys. Interestingly, with the increase of Sr content from 0.14 wt% to 0.39 wt%, the grain sizes of the as-cast and as-extruded Mg–14 wt%Li–xSr alloys markedly decreased from 5000mm and 38mm to 330 mm and 22mm respectively, while no obvious changes of the micro-hardness and microstructure of the as-extruded alloys were observed during the aging treatment.  相似文献   

14.
The microstructure and mechanical properties of Al-4.5wt% Cu alloy reinforced with different volume fractions (1.5vol%, 3vol%, and 5vol%) of alumina nanoparticles, fabricated using stir casting method, were investigated. Calculated amounts of alumina nanoparticles (about ?50 nm in size) were ball-milled with aluminum powders in a planetary ball mill for 5 h, and then the packets of milled powders were incorporated into molten Al-4.5wt% Cu alloy. Microstructural studies of the nanocomposites reveal a uniform distribution of alumina nanoparticles in the Al-4.5wt% Cu matrix. The results indicate an outstanding improvement in compression strength and hardness due to the effect of nanoparticle addition. The aging behavior of the composite is also evaluated, indicating that the addition of alumina nanoparticles can accelerate the aging process of the alloy, resulting in higher peak hardness values.  相似文献   

15.
This paper presents a systematic study of newly developed metastable β-type Ti-25Nb-2Mo-4Sn (wt%) alloy with high strength and low elastic modulus, with focus on the microstructural evolution and mechanical behavior associated with aging. The pre-treatment (solution treatment or cold rolling) prior to aging exerts substantial influence on the subsequent aging response including microstructural evolution and mechanical behavior. Even under the same aging treatment, the aging products could be (β+ω), or alternatively (β+α), depending on the pre-treatments. This interesting aging response was discussed on the basis of the mechanism for ω formation. High-density dislocation tangles and grain boundaries induced by severe cold rolling play a key role in hindering the transition from β to isothermal ω, favoring the precipitation of α phase on aging. By aging cold-rolled specimen for short time, superior mechanical properties, i.e. high ultimate strength of ~1113 MPa and low elastic modulus of ~65 GPa, achieved in Ti-25Nb-2Mo-4Sn alloy. The characterization of microstructural evolution and compositional change indicated that the precipitation of fine α does not cause the enrichment of β-stabilizers in β matrix upon a short-time aging, guaranteeing low elastic modulus of the short-time aged specimen. Meanwhile, fine α precipitates as well as dislocations play a crucial part in strengthening, giving rise to its high yield strength and high ultimate tensile strength.  相似文献   

16.
Ti_3SiC_2-reinforced Ag-matrix composites are expected to serve as electrical contacts. In this study, the wettability of Ag on a Ti_3SiC_2 substrate was measured by the sessile drop method. The Ag–Ti_3SiC_2 composites were prepared from Ag and Ti_3SiC_2 powder mixtures by pressureless sintering. The effects of compacting pressure(100–800 MPa), sintering temperature(850–950°C), and soaking time(0.5–2 h) on the microstructure and properties of the Ag–Ti_3SiC_2 composites were investigated. The experimental results indicated that Ti_3SiC_2 particulates were uniformly distributed in the Ag matrix, without reactions at the interfaces between the two phases. The prepared Ag–10 wt%Ti_3SiC_2 had a relative density of 95% and an electrical resistivity of 2.76 × 10-3 mΩ?cm when compacted at 800 MPa and sintered at 950°C for 1 h. The incorporation of Ti_3SiC_2 into Ag was found to improve its hardness without substantially compromising its electrical conductivity; this behavior was attributed to the combination of ceramic and metallic properties of the Ti_3SiC_2 reinforcement, suggesting its potential application in electrical contacts.  相似文献   

17.
18.
The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition-microstructure-property relationships of the Ti64-xMo alloys were obtained. The phase fraction and composition of the α and β phases of the Ti64-xMo alloys were calculated using the Thermo-Calc software. After aging at 600℃, the Ti64-6Mo alloy precipitated ultrafine α phases. This phenomenon was explained on the basis of the pseudo-spinodal mechanism by calculating the Gibbs energy curves of the α and β phases of the Ti64-xMo alloys at 600℃. Bulk forged Ti64-6Mo alloy exhibited high strength and moderate plasticity after α/β-phase-field solution treatment plus aging. The tensile properties of the alloy were determined by the size and morphology of the primary and secondary α phases and by the β grain size.  相似文献   

19.
Al2O3 dispersion copper alloy powder was prepared by internal oxidation, and three consolidation methods—high-velocity compaction (HVC), hot pressing (HP), and hot extrusion (HE)—were used to prepare Al2O3 dispersion-strengthened copper (Cu–Al2O3) alloys. The microstructures and properties of these alloys were investigated and compared. The results show that the alloys prepared by the HP and HE methods exhibited the coarsest and finest grain sizes, respectively. The alloy prepared by the HVC method exhibited the lowest relative density (98.3% vs. 99.5% for HP and 100% for HE), which resulted in the lowest electrical conductivity (81% IACS vs. 86% IACS for HP and 87% IACS for HE). However, this alloy also exhibited the highest hardness (77 HRB vs. 69 HRB for HP and 70 HRB for HE), the highest compressive strength (443 MPa vs. 386 MPa for HP and 378 MPa for HE), and the best hardness retention among the investigated alloys. The results illustrate that the alloy prepared by the HVC method exhibits high softening temperature and good mechanical properties at high temperatures, which imply long service life when used as spot-welding electrodes.  相似文献   

20.
Ti–51at%Ni shape memory alloys(SMAs) were successfully produced via a powder metallurgy and microwave sintering technique.The influence of sintering parameters on porosity reduction,microstructure,phase transformation temperatures,and mechanical properties were investigated by optical microscopy,field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD),differential scanning calorimetry(DSC),compression tests,and microhardness tests.Varying the microwave temperature and holding time was found to strongly affect the density of porosity,presence of precipitates,transformation temperatures,and mechanical properties.The lowest density and smallest pore size were observed in the Ti–51at%Ni samples sintered at 900°C for 5 min or at 900°C for 30 min.The predominant martensite phases of β2 and β19′ were observed in the microstructure of Ti–51at%Ni,and their existence varied in accordance with the sintering temperature and the holding time.In the DSC thermograms,multi-transformation peaks were observed during heating,whereas a single peak was observed during cooling;these peaks correspond to the presence of the β2,R,and β19′ phases.The maximum strength and strain among the Ti–51at%Ni SMAs were 1376 MPa and 29%,respectively,for the sample sintered at 900°C for 30 min because of this sample's minimal porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号