首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
基于RBF网络的混沌时间序列的建模与多步预测   总被引:10,自引:1,他引:10  
提出将RBF神经网络应用于混沌时间序列的建模与预测中 ,设计了一个三层RBF网络结构 ,说明了RBF网络用于混沌时间序列建模和预测时的基本性质。仿真结果表明 ,RBF网络模型对混沌时间序列有比较强的拟合能力和比较高的一步及多步预测精度。采用RBF网络进行混沌时间序列的建模和预测能够取得比其它方法好得多的效果。  相似文献   

2.
混沌时间序列局域预测方法   总被引:16,自引:1,他引:16  
在深入研究混沌时间序列局域预测方法的基础上,提出了一种加权局域基函数预测方法。该方法综合考虑了广义自由度和邻近点权重,提出了加权动态确定最邻近点数的判定条件,并利用基函数拟合确定出的最邻近点进行预测。算例分析表明,加权局域基函数法具有较高的预测精度,是比较理想的用于混沌时间序列的预测方法。  相似文献   

3.
为解决时间序列的一步预测问题,提出了一种基于混沌算子的预测网络.混沌算子具有复杂的动力学行为,根据各算子所处的不同状态,利用加权方法计算出时间序列下一时刻的预测值.根据预测值与实际值的误差,利用混沌优化方法动态地调节混沌算子的参数,逐渐提高网络的预测精度.利用该方法分别对混沌以及实际股票价格等复杂时间序列进行了仿真预测.仿真结果表明,该方法可以对具有内在确定性的系统进行有效的预测.  相似文献   

4.
基于支持向量机的混沌时间序列非线性预测   总被引:25,自引:1,他引:25  
提出一种新的应用支持向量机回归原理的混沌时间序列非线性预测方法,同时利用自适应的方法对支持向量机的参数进行优化.仿真结果显示支持向量机具有比传统的回归方法更好的泛化能力,预测方法具有很高的预测精度,同时还讨论了支持向量机中参数以及嵌入维数的变化对泛化误差的影响,得出的结论与统计学习理论中的VC维理论相一致.  相似文献   

5.
混沌时间序列的混合遗传神经网络预测方法   总被引:3,自引:0,他引:3  
李目  何怡刚  周少武  谭文 《系统仿真学报》2008,20(21):5825-5828
在相空间重构理论的基础上,将改进的遗传算法和神经网络结合起来,提出了一种混合遗传神经网络预测混沌时问序列的方法.通过复相关法和Cao方法重构混沌时间序列,利用改进的遗传算法优化神经网络的结构、初始权值和阚值,然后训练神经网络求得最优解.该算法应用到混沌时间序列的预测中,验证了该算法的有效性,并与BP和RBF算法的预测精度进行了比较,仿真结果表明该算法对混沌时间序列具有更好的非线性拟合能力和更高的预测精度.  相似文献   

6.
混沌时间序列的混合预测方法   总被引:1,自引:1,他引:1  
提出了一种基于小波变换、粒子群优化的最小二乘支持向量机(PSO-LSSVM)和广义自回归条件异方差模型(GARCH)的混沌时间序列的混合预测方法.首先利用小波变换将混沌时间序列分解和重构成概貌时间序列和细节时间序列; 然后利用PSO-LSSVM模型预测概貌时间序列的未来值,采用GARCH模型预测细节时间序列的未来值;最后将概貌时间序列和细节时间序列的未来值求和作为最终的预测结果.采用该方法对Mackey-Glass和变参数Logistic混沌时间序列进行预测. 结果表明该方法能精确地预测混沌时间序列,验证了文中所提方法的有效性.  相似文献   

7.
混沌时间序列建模及预测   总被引:13,自引:1,他引:13  
讨论了混沌时间序列的建模及预测方法 ,给出了各重要参数的选取算法 ,并应用于实例 ,与传统的时间序列预测方法相比较 ,取得了精度更高的预测结果 ,从而为一类非线性时间序列提供了从数据采集识别到建模预测的完整技术.  相似文献   

8.
提出了一种基于随机模糊神经网络对噪声混沌时间序列进行建模与预测的方法,并介绍了一种基于非单值逻辑随机模糊神经网络(SFNN)的结构和学习算法.在此基础上,应用该网络对含随机噪声的麦克-格拉斯混沌时间序列进行了仿真,仿真结果表明,在噪声较大的情况下,SFNN比FNN方法有更好的预测效果.  相似文献   

9.
自适应局部线性化法预测混沌时间序列   总被引:5,自引:1,他引:5  
提出一种基于奇异值分解最小二乘法的自适应局部线性化预测方法.它要求数据矩阵的条件数不大于给定阈值,并据此自适应地确定当前相空间的维数,然后根据新的嵌入维数重构数据矩阵,进行模型的参数估计和计算当前预测值.实验结果说明所提方法精度高且稳健.特别是当嵌入维数接近最邻近向量的数目时,其性能显著优于普通局部线性化方法.  相似文献   

10.
针对多变量混沌时间序列,给出一种Volterra滤波器实现结构.该滤波器利用基于奇异值分解的最小二乘法确定初始核,通过归一化最小均方差(normalized least mean square,NLMS)算法实时确定滤波系数,并用这种多变量Volterra结构对Lorenz时间序列进行仿真.计算结果表明,在无噪声情况下,该方法的实时一步预测精度比目前单变量混沌时间序列Volterra自适应预测方法的一步预测精度提高了102倍,表明这种实现结构易实现且收敛性能更好;在有噪声的情况下,该方法的实时多步预测性能优于局部多项式预测法的多步预测性能,且抗噪性更强.  相似文献   

11.
混沌时间序列的平均周期计算方法   总被引:2,自引:0,他引:2  
在研究制造质量信息系统的混沌特性,使用小数据量法求解时间序列的Lyapunov指数时,使用文献中推荐的方法计算得到的平均周期不可信。针对这个问题,对比分析了六种平均周期计算方法,及其与时间序列长度、经过FFT变换后的幅值及功率之间的关系。在此基础上,以华南智信的日产品生产合格率数据及Lorenz系统产生的混沌时间序列为原始数据,计算这两个混沌时间序列的六个平均周期。实际生产数据与Lorenz系统数据进行对比后,发现六种平均周期对于平均周期计算来说,大小变化是一致的;再结合生产合格率数据的物理意义,对计算结果进行分析,综合前述理论分析,得到的结论是以功率加权计算得到的平均周期的在实际使用过程中有意义。  相似文献   

12.
针对常用的入库径流混沌预测模型只能做短期预测,且需要大量样本数据的问题,将支持向量机理论与混沌预测理论相耦合,建立基于支持向量机的入库径流混沌时间序列预测模型,该模型利用混沌理论中的相空间重构技术将原始入库径流序列映射到一个高维相空间,以相空间中的相,占为基础构造训练样本和测试样本,然后利用支持向量机理论进行预测。经实例计算,模型比基于最大Lyapunov指数的混沌预测模型、人工神经网络模型和自回归模型拟合效果好,预测精度高,丰富和发展了入库径流预测理论和方法。  相似文献   

13.
Outliers Mining in Time Series Data Sets   总被引:2,自引:0,他引:2  
1 INTRODUCTIONKnowledgediscoveryindatabases,commonlyreferredtoasdatamining ,isgeneratingenormousinterestsinbothresearchandsoftwareareas.However,muchoftherecentworkhasbeenfocusedonfinding“LargePat terns”whichpresentcharacteristicsoftheinputdataexhibitedby…  相似文献   

14.
在定义了制造企业生产制造时间序列的基础上,使用G-P算法计算时间序列的关联维数。通过关联维数的计算得到相应的嵌入维数后,使用基于相空间重构的小数据量法计算混沌时间序列的Lyapunov指数。采集HZ近三年的日生产产品合格率作为研究制造质量水平变化混沌特性的原始数据。在以上技术路线及数据的基础上,得到的关联维为分数,而Lyapunov指数为正值,说明日生产产品合格率变化时间序列呈现出混沌特性。另外将以上数据分为8个时间序列,每个时间序列同样得到分数关联维数与正Lyapunov指数,说明制造质量水平的变化是一直是混沌的,为制造质量水平的预测在理论上提供了可能性。  相似文献   

15.
一类新的时序预报模型   总被引:2,自引:0,他引:2  
对时间序列的一类新的建模与预报方法进行了研究 ,把灰色模型与自回归时序 AR模型组合建模 ,通过实例分析取得好的效果 .  相似文献   

16.
关于导弹定价的时序模糊综合评判   总被引:1,自引:0,他引:1  
本文利用模糊集分析的方法,量化了影响导弹价值的因素,建立了关于导弹定价的时序模糊综合评判模型。并且对改装后的导弹定价和分批交付的导弹综合定价进行了定量计算并分析了结果。  相似文献   

17.
提出了一种用神经网络同步器对混沌吸引子进行分类的方法。该方法对每一类混沌吸引子都训练一个相应的神经网络同步器 ,采用同步测量法实现驱动与被驱动网络的渐近同步 ,所以这种测试方法与系统内部状态的初始值无关。最后通过对Lorenz和R ssler混沌吸引子进行分类证实了所提分类方案的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号