共查询到17条相似文献,搜索用时 46 毫秒
1.
基于支持向量机的模式识别方法 总被引:4,自引:0,他引:4
介绍了由Vapnik等人提出的统计学习理论和由此发展的支持向量机,分析了其应用前景和研究方向,两个算例表明,在模式识别领域中,采用支持向量机这一新方法,具有其他传统方法不可比拟的优势。 相似文献
2.
回顾了几种传统的交通事件检测算法,提出一种新的交通模式识别方法:即从多层前向人工神经网络角度建立模型,运用BP算法予以实现,获取交通流参数的残差。再应用支持向量机良好的分类性能将残差所预示的交通模式予以分类,并与传统BP算法进行比较之后,发现此方法具有检测率高、误报率低、检测时间短的优点。 相似文献
3.
4.
针对现有电子鼻系统训练误差大、运行速度慢等特点,提出了一种新的基于在线支持向量机(Online-SVM)的电子鼻系统模式识别方法。该方法使用CH4气体与传感器阵列响应的值作为输入数据,经在线支持向量机算法进行模式识别,对CH4气体的浓度进行预测和分类。与期望结果对比,新方法的平均误差降低为5.3%,运行时间降为0.1994s,表明基于在线支持向量机的电子鼻系统模式识别方法能有效提高电子鼻系统识别的精度和速度。 相似文献
5.
介绍了BP人工神经网络在局部放电模式识别中的应用,结合实际现场情况提出了一种基于统计分析的局部放电特性提取方法,在此方法的荐对空气火花放同中火花放电进行了式识别实验,实验结果证明了这种放电特性提取方法在局部放电模式识别应用中的可行性。 相似文献
6.
介绍了BP人工神经网络在局部放电模式识别中的应用.结合实际现场情况提出了一种基于统计分析的局部放电特性提取方法,在此方法的基础上对空气火花放电和油中火花放电进行了模式识别实验,实验结果证明了这种放电特性提取方法在局部放电模式识别应用中的可行性. 相似文献
7.
最小二乘支持向量机的短期负荷多尺度预测模型 总被引:9,自引:0,他引:9
提出了一种改进的电力负荷短期预测小波网络模型,该模型采用最小二乘支持向量机(LS-SVM)实现了小波分解系数的多尺度组合预测.首先使用多孔算法对短期负荷序列进行小波分解,得到指定尺度下的近似系数和相关尺度下的小波系数,然后利用LS-SVM对预测点的系数进行多尺度组合预测,通过小波重构可以求得相应的预测值.结合某地区短期负荷需求数据进行了仿真试验,研究了预测点与历史记录数据的相关关系.预测结果表明,使用本模型进行短期负荷预测同比传统小波神经网络方法可以获得更好的预测精度,同时LS-SVM的引入大大提高了模型的可计算性. 相似文献
8.
陈丹 《东莞理工学院学报》2007,14(5):65-69
支持向量机(SVM)是建立在统计学习理论的基础上的一种小样本机器学习方法,它是针对二分类问题而提出的,如何将二分类问题有效地推广至多分类问题是支持向量机研究的重要内容之一.介绍了现有提出的一些支持向量机多分类的方法,并比较其优缺点,在模糊支持向量机的基础上提出具有去噪声的模糊支持向量机的多分类的方法. 相似文献
9.
为对不同类型局部放电信号进行识别,笔者提出一种新的特征提取方法.首先,制作了4种典型的局部放电人工缺陷模型,并通过S变换对采集的局部放电UHF信号进行时频分析;然后,采用双向二维主成分分析(2DPCA)对S变换幅值矩阵进行压缩以提取特征;最后,引入基于粒子群算法优化参数的支持向量机对样本特征集进行模式识别.识别结果表明:4种特征维数组合中,(10,5)组合的平均识别率最高,(5,5)组合最低;粒子群优化算法的引入大幅提高了支持向量机的分类性能,平均识别率均在94.43%以上,最高可达到97.67%.由此可见,经过S变换和双向2DPCA提取的特征集在维数显著约减的同时,保留了原始数据大部分信息量,能够获得较为理想的分类识别率. 相似文献
10.
11.
12.
支持向量机(Support Vector Machines简称SVMs)是基于统计学习理论的一种新的模式识别技术,它不仅结构简单,而且技术性能尤其是泛化能力明显提高。介绍了支持向量机为理论基础的通信信号调制识别方法。计算机仿真结果证实此方法的可行性。 相似文献
13.
孟娇茹 《黑龙江科技学院学报》2009,19(1):50-53
针对目前航空发动机孔探检测不能对损伤类型自动识别现状,将支持向量机与孔探检测技术相结合,提出基于支持向量机(SVM)的损伤图像识别方法。该方法将损伤图像进行二值化分割,利用链码跟踪及灰度共生矩阵分别提取损伤区域的形状特征和纹理特征,组成多维特征向量,输入支持向量机进行分类识别。分类器设计阶段,组建性能优越的二叉树支持向量机以减少训练样本,提高分类效率。CFM56发动机实验结果表明:该方法的识别性能明显优于传统SVM多分类器和BP神经网络方法。 相似文献
14.
基于Gabor小波和支持向量机的人脸识别 总被引:1,自引:1,他引:1
提出一种将Gabor小波和支持向量机相结合的人脸识别算法。运用AdaBoost算法在复杂背景图像中快速准确地检测出人脸部分,进而用Gabor小波提取归一化人脸图像的特征。最后采用支持向量机进行人脸的分类识别。在ORL人脸库和CAS-PEAL-R1人脸库中对算法进行了测试,结果表明该算法识别率较高。 相似文献
15.
基于小波变换和支持向量机的人脸识别研究 总被引:1,自引:0,他引:1
人脸识别是机器视觉、模式识别等领域的研究热点,具有广阔的应用前景.文章利用小波变换对人脸图像进行预处理,减少表情变化对人脸识别的影响;根据PCA法,将处理后的人脸图像映射到相互正交的特征脸坐标轴上,实现了特征降维;利用支持向量机分类模型对人脸图像在特征脸坐标轴上的投影向量进行识别,并在ORL和Yale人脸库上进行实验,... 相似文献
16.
基于小波包分解和支持向量机的虹膜识别方法 总被引:1,自引:0,他引:1
考虑到虹膜识别的非线性和小样本的特点,以及小波包分解具有的分析高频特征信息的优势,提出了一种基于小波包分解和支持向量机的虹膜识别方法.首先对虹膜图像实行分窗小波包分解,再对各窗口的子带图像做筛选处理;然后通过奇异值分解对筛选后的各子带图像做进一步的特征提取和压缩,得到虹膜识别特征;最后利用支持向量机对虹膜特征进行模式匹配.实验结果表明了该算法的有效性. 相似文献
17.
吴国洋 《兰州理工大学学报》2013,39(4):32-36
为了对轴承的故障进行有效的识别,提出基于特征熵和优化支持向量机的轴承故障识别新方法.利用EMD分解信号提取分解信号的能量熵,由于这些熵值之间冗余信息较为严重,因此选用主成分分析对这些熵信息进行约简,提取最有效的特征信息,作为支持向量机模型的输入.通过粒子群优化选取最优决策树构造最佳的支持向量机分类模型进行状态的识别和判定,提高了分类的精确度.通过一个滚动轴承的实例说明方法的有效性和准确性. 相似文献