首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Reuter  M Giarre  J Farah  J Gausz  A Spierer  P Spierer 《Nature》1990,344(6263):219-223
Position-effect variegation is the inactivation in some cells of a gene translocated next to heterochromatin, the region of the chromosome that is permanently condensed. The number of copies of the Drosophila gene Suvar(3)7 is a dose-limiting factor in this phenomenon, and seems from its sequence that it encodes a protein with five widely spaced zinc-fingers. This novel arrangement of zinc-fingers could help in packaging the chromatin fibre into heterochromatin, and also reflect a novel method of controlling the expression from DNA domains.  相似文献   

2.
Saveliev A  Everett C  Sharpe T  Webster Z  Festenstein R 《Nature》2003,422(6934):909-913
Gene repression is crucial to the maintenance of differentiated cell types in multicellular organisms, whereas aberrant silencing can lead to disease. The organization of DNA into chromatin and heterochromatin is implicated in gene silencing. In chromatin, DNA wraps around histones, creating nucleosomes. Further condensation of chromatin, associated with large blocks of repetitive DNA sequences, is known as heterochromatin. Position effect variegation (PEV) occurs when a gene is located abnormally close to heterochromatin, silencing the affected gene in a proportion of cells. Here we show that the relatively short triplet-repeat expansions found in myotonic dystrophy and Friedreich's ataxia confer variegation of expression on a linked transgene in mice. Silencing was correlated with a decrease in promoter accessibility and was enhanced by the classical PEV modifier heterochromatin protein 1 (HP1). Notably, triplet-repeat-associated variegation was not restricted to classical heterochromatic regions but occurred irrespective of chromosomal location. Because the phenomenon described here shares important features with PEV, the mechanisms underlying heterochromatin-mediated silencing might have a role in gene regulation at many sites throughout the mammalian genome and modulate the extent of gene silencing and hence severity in several triplet-repeat diseases.  相似文献   

3.
Role of transposable elements in heterochromatin and epigenetic control   总被引:1,自引:0,他引:1  
Heterochromatin has been defined as deeply staining chromosomal material that remains condensed in interphase, whereas euchromatin undergoes de-condensation. Heterochromatin is found near centromeres and telomeres, but interstitial sites of heterochromatin (knobs) are common in plant genomes and were first described in maize. These regions are repetitive and late-replicating. In Drosophila, heterochromatin influences gene expression, a heterochromatin phenomenon called position effect variegation. Similarities between position effect variegation in Drosophila and gene silencing in maize mediated by "controlling elements" (that is, transposable elements) led in part to the proposal that heterochromatin is composed of transposable elements, and that such elements scattered throughout the genome might regulate development. Using microarray analysis, we show that heterochromatin in Arabidopsis is determined by transposable elements and related tandem repeats, under the control of the chromatin remodelling ATPase DDM1 (Decrease in DNA Methylation 1). Small interfering RNAs (siRNAs) correspond to these sequences, suggesting a role in guiding DDM1. We also show that transposable elements can regulate genes epigenetically, but only when inserted within or very close to them. This probably accounts for the regulation by DDM1 and the DNA methyltransferase MET1 of the euchromatic, imprinted gene FWA, as its promoter is provided by transposable-element-derived tandem repeats that are associated with siRNAs.  相似文献   

4.
Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA   总被引:3,自引:0,他引:3  
Yu W  Gius D  Onyango P  Muldoon-Jacobs K  Karp J  Feinberg AP  Cui H 《Nature》2008,451(7175):202-206
  相似文献   

5.
BRCA1 tumour suppression occurs via heterochromatin-mediated silencing   总被引:1,自引:0,他引:1  
Zhu Q  Pao GM  Huynh AM  Suh H  Tonnu N  Nederlof PM  Gage FH  Verma IM 《Nature》2011,477(7363):179-184
  相似文献   

6.
Heterochromatin links to centromeric protection by recruiting shugoshin   总被引:1,自引:0,他引:1  
Yamagishi Y  Sakuno T  Shimura M  Watanabe Y 《Nature》2008,455(7210):251-255
The centromere of a chromosome is composed mainly of two domains, a kinetochore assembling core centromere and peri-centromeric heterochromatin regions. The crucial role of centromeric heterochromatin is still unknown, because even in simpler unicellular organisms such as the fission yeast Schizosaccharomyces pombe, the heterochromatin protein Swi6 (HP1 homologue) has several functions at centromeres, including silencing gene expression and recombination, enriching cohesin, promoting kinetochore assembly, and, ultimately, preventing erroneous microtubule attachment to the kinetochores. Here we show that the requirement of heterochromatin for mitotic chromosome segregation is largely replaced by forcibly enriching cohesin at centromeres in fission yeast. However, this enrichment of cohesin is not sufficient to replace the meiotic requirement for heterochromatin. We find that the heterochromatin protein Swi6 associates directly with meiosis-specific shugoshin Sgo1, a protector of cohesin at centromeres. A point mutation of Sgo1 (V242E), which abolishes the interaction with Swi6, impairs the centromeric localization and function of Sgo1. The forced centromeric localization of Sgo1 restores proper meiotic chromosome segregation in swi6 cells. We also show that the direct link between HP1 and shugoshin is conserved in human cells. Taken together, our findings suggest that the recruitment of shugoshin is the important primary role for centromeric heterochromatin in ensuring eukaryotic chromosome segregation.  相似文献   

7.
RNA可以单独或者通过与其它蛋白因子的相互作用参与基因表达的调控。在转录前水平,RNA分子可以通过介导DNA的甲基化或异染色质的形成来调控基因表达;在转录水平,RNA分子通过直接与转录因子或RNA聚合酶相互作用来调控基因表达;在转录后水平,RNA利用由siRNA和microRNA介导的RNA干扰机制,通过降解目标mRNA或阻碍目标基因的翻译来沉默基因的表达。此外,mRNA还可以通过感知环境中代谢物的浓度,通过形成核糖开关(riboswitch)来调控基因的表达;反义RNA可以从复制、转录和翻译3个水平上调控基因的表达。  相似文献   

8.
Yin H  Lin H 《Nature》2007,450(7167):304-308
  相似文献   

9.
10.
RNA silencing in plants   总被引:7,自引:0,他引:7  
Baulcombe D 《Nature》2004,431(7006):356-363
There are at least three RNA silencing pathways for silencing specific genes in plants. In these pathways, silencing signals can be amplified and transmitted between cells, and may even be self-regulated by feedback mechanisms. Diverse biological roles of these pathways have been established, including defence against viruses, regulation of gene expression and the condensation of chromatin into heterochromatin. We are now in a good position to investigate the full extent of this functional diversity in genetic and epigenetic mechanisms of genome control.  相似文献   

11.
Bundock P  Hooykaas P 《Nature》2005,436(7048):282-284
A significant proportion of the genomes of higher plants and vertebrates consists of transposable elements and their derivatives. Autonomous DNA type transposons encode a transposase that enables them to mobilize to a new chromosomal position in the host genome by a cut-and-paste mechanism. As this is potentially mutagenic, the host limits transposition through epigenetic gene silencing and heterochromatin formation. Here we show that a transposase from Arabidopsis thaliana that we named DAYSLEEPER is essential for normal plant growth; it shares several characteristics with the hAT (hobo, Activator, Tam3) family of transposases. DAYSLEEPER was isolated as a factor binding to a motif (Kubox1) present in the upstream region of the Arabidopsis DNA repair gene Ku70. This motif is also present in the upstream regions of many other plant genes. Plants lacking DAYSLEEPER or strongly overexpressing this gene do not develop in a normal manner. Furthermore, DAYSLEEPER overexpression results in the altered expression of many genes. Our data indicate that transposase-like genes can be essential for plant development and can also regulate global gene expression. Thus, transposases can become domesticated by the host to fulfil important cellular functions.  相似文献   

12.
13.
Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9   总被引:13,自引:0,他引:13  
Specific modifications to histones are essential epigenetic markers---heritable changes in gene expression that do not affect the DNA sequence. Methylation of lysine 9 in histone H3 is recognized by heterochromatin protein 1 (HP1), which directs the binding of other proteins to control chromatin structure and gene expression. Here we show that HP1 uses an induced-fit mechanism for recognition of this modification, as revealed by the structure of its chromodomain bound to a histone H3 peptide dimethylated at Nzeta of lysine 9. The binding pocket for the N-methyl groups is provided by three aromatic side chains, Tyr21, Trp42 and Phe45, which reside in two regions that become ordered on binding of the peptide. The side chain of Lys9 is almost fully extended and surrounded by residues that are conserved in many other chromodomains. The QTAR peptide sequence preceding Lys9 makes most of the additional interactions with the chromodomain, with HP1 residues Val23, Leu40, Trp42, Leu58 and Cys60 appearing to be a major determinant of specificity by binding the key buried Ala7. These findings predict which other chromodomains will bind methylated proteins and suggest a motif that they recognize.  相似文献   

14.
Tri-methylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging and heterochromatin formation. Here we show that HP1alpha, -beta, and -gamma are released from chromatin during the M phase of the cell cycle, even though tri-methylation levels of histone H3 lysine 9 remain unchanged. However, the additional, transient modification of histone H3 by phosphorylation of serine 10 next to the more stable methyl-lysine 9 mark is sufficient to eject HP1 proteins from their binding sites. Inhibition or depletion of the mitotic kinase Aurora B, which phosphorylates serine 10 on histone H3, causes retention of HP1 proteins on mitotic chromosomes, suggesting that H3 serine 10 phosphorylation is necessary for the dissociation of HP1 from chromatin in M phase. These findings establish a regulatory mechanism of protein-protein interactions, through a combinatorial readout of two adjacent post-translational modifications: a stable methylation and a dynamic phosphorylation mark.  相似文献   

15.
Eukaryotic genomes are packaged into nucleosomes, which are thought to repress gene expression generally. Repression is particularly evident at yeast telomeres, where genes within the telomeric heterochromatin appear to be silenced by the histone-binding silent information regulator (SIR) complex (Sir2, Sir3, Sir4) and Rap1 (refs 4-10). Here, to investigate how nucleosomes and silencing factors influence global gene expression, we use high-density arrays to study the effects of depleting nucleosomal histones and silencing factors in yeast. Reducing nucleosome content by depleting histone H4 caused increased expression of 15% of genes and reduced expression of 10% of genes, but it had little effect on expression of the majority (75%) of yeast genes. Telomere-proximal genes were found to be de-repressed over regions extending 20 kilobases from the telomeres, well beyond the extent of Sir protein binding and the effects of loss of Sir function. These results indicate that histones make Sir-independent contributions to telomeric silencing, and that the role of histones located elsewhere in chromosomes is gene specific rather than generally repressive.  相似文献   

16.
17.
18.
Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins   总被引:112,自引:0,他引:112  
Lachner M  O'Carroll D  Rea S  Mechtler K  Jenuwein T 《Nature》2001,410(6824):116-120
Distinct modifications of histone amino termini, such as acetylation, phosphorylation and methylation, have been proposed to underlie a chromatin-based regulatory mechanism that modulates the accessibility of genetic information. In addition to histone modifications that facilitate gene activity, it is of similar importance to restrict inappropriate gene expression if cellular and developmental programmes are to proceed unperturbed. Here we show that mammalian methyltransferases that selectively methylate histone H3 on lysine 9 (Suv39h HMTases) generate a binding site for HP1 proteins--a family of heterochromatic adaptor molecules implicated in both gene silencing and supra-nucleosomal chromatin structure. High-affinity in vitro recognition of a methylated histone H3 peptide by HP1 requires a functional chromo domain; thus, the HP1 chromo domain is a specific interaction motif for the methyl epitope on lysine9 of histone H3. In vivo, heterochromatin association of HP1 proteins is lost in Suv39h double-null primary mouse fibroblasts but is restored after the re-introduction of a catalytically active SWUV39H1 HMTase. Our data define a molecular mechanism through which the SUV39H-HP1 methylation system can contribute to the propagation of heterochromatic subdomains in native chromatin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号