共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究局地短时强降水天气的特征,使用MICAPS天气资料、南昌探空资料、宜春SA天气雷达等资料,对2020年6月8日新余局地暴雨天气过程进行分析,结果表明:暴雨天气过程是由突发性局地短时强降水造成,降水系统移速较慢、长时间维持、降水效率高,出现20 mm/h以上的短时强降水.地面辐合线是形成局地短时强降水的触发机制,降水系统随着地面辐合线的移动;辐合线移动过程中存在气旋性环流,导致系统移速缓慢,形成局地暴雨.新生云系如果出现合并现象,往往会快速地发展加强形成强天气.回波基本上沿地面辐合线排列和移动,在移动过程中还伴随回波单体的新生、发展、合并、减弱等过程,短时强降水发生在回波发展合并过程中.雷达剖面分析得出回波强度在垂直上发展的比较均匀,强回波中心分布在6 km以下高度上;水汽大部分集中在地面与5 km融化层之间,这种回波特征适合产生高效的降水.这些特征为新余短时强降水造成的暴雨天气提供了理论依据. 相似文献
2.
为了有效监测丰城短时强降水和预警大暴雨天气的发生,使用自动气象站数据、MICAPS天气图、云图、探空等资料,采用多种分析方法,对丰城市2012—2020年(5—8月汛期)短时强降水过程进行分析,结果表明:1)丰城市20次短时强降水过程有28个短时强降水回波系统个例,最多一次过程出现4个短时强降水回波系统个例,短时强降水最大值为65.6 mm/h;丰城短时强降水的统计是以雷达回波系统来体现,表现在回波形态和组合反射率CR强度上; 2)强降水主要出现在5—9月,大部份个例伴有明显的低层辐合,200 h Pa有分流区,同时有“上干下湿”“上冷下暖”的温湿场垂直结构,低层辐合与高层辐散相配合导致强降水的发生; 3) T-lnP图上强降水过程多伴有深厚的湿层,但中层也会有“干盖”结构,上干下湿导致强对流的发展,触发强降水的发生; 4)强降水过程中850 h Pa气温平均19.6℃,700 h Pa气温平均11℃,500~1 000 h Pa风垂直切变平均为10 m/s,700 h Pa相对湿度平均为89%,500 h Pa相对湿度平均为89%,CAPE平均614 J/kg、K指数平均38℃、SI... 相似文献
3.
利用四川盆地和重庆地区1980-2012年主汛期(5-9月)基本站小时降水观测资料,分析了短时强降水事件降水量、频次和强度的日变化特征,研究了短时强降水事件日峰值位相和空间分布特征,事件极值降水日变化和持续时间等分布特征,得出以下主要结论:1)川渝盆地短时强降水事件开始时间的日变化上(01:00-24:00时,北京时间,下同),表现为“V”型结构下典型夜间峰值位相特征;结束时间的日变化上,表现为多个峰值型结构分布.强降水事件持续时间的日变化上,频次和降水量均呈双峰型结构,频次极大峰值出现在3 h,而强度上随着持续时间的延长,呈现逐渐增加的趋势;2)短时强降水事件极值开始时间空间分布上,极大频次和极大降水量出现在20:00-01:00时内,主要分布在盆地南部和西部大部分地区;日峰值频次结束时间主要发生在20:00-01:00时和08:00-13:00时两个时段内,主要分布于盆地南部、中部和西部大部分地区;3)短时强降水事件极值降水的日变化上,降水量和频次呈现单峰型结构,白天多为短时间(2~4 h)强降水事件出现极值,而傍晚开始至第二天清晨,持续2~10 h强降水事件出现极值均有发生;强降水事件极值降水持续时间日变化,1~24 h内呈单峰型结构,峰值出现在2 h. 相似文献
4.
为了弄清三亚短时强降水的时空分布特征,利用三亚2009—2021年1个国家级地面气象站及18个加密地面观测站的逐小时和日降水数据以及哈德莱中心月平均海表温度资料,采用空间插值、经验正交函数分解、线性统计分析及相关性分析等方法,对三亚短时强降水的时空变化特征、短时强降水与暴雨的关系进行了分析,揭示其变化规律.结果表明:三亚短时强降水呈北多南少和东多西少的空间分布特征;EOF分解得到三亚短时强降水呈现全区一致和东西差异两种典型的空间分布模态,华南沿海海温异常是影响全区一致性降水模态的重要因子;短时强降水年平均出现站次为19.1,76.33%的短时强降水集中在16.0~30.0 mm·h-1,短时强降水月变化呈双峰结构,峰值出现在7月份和9月份,87.32%的短时强降水出现在4~10月份;日变化的双峰结构明显,多发时段为04~05时、07~08时及16~17时;月平均短时强降水为26.6 mm·h-1,极端小时降水为107.4 mm·h-1,极端小时降水多由强对流系统引起. 83.34%的暴雨过程伴有短时强降水,两者呈显著性正... 相似文献
5.
6.
对2006—2018年铜仁市10个城镇4—10月短时强降水日和暴雨日进行对比分析发现:以短时强降水日为基准,达到暴雨的风险在44%~66.7%之间;以暴雨日为基准,短时强降水的风险在45.5%~64.5%之间。根据暴雨过程中发生短时强降水的风险高低,将铜仁市划分为可能发生区、较易发生区、容易发生区,有利于提高服务的针对性。 相似文献
7.
利用2013—2018年主汛期闽中沿海地区(福州、莆田、平潭)自动站逐时雨量资料,选取西风带系统较强的短时强降水日,分类型分析这些短时强降水日的主要天气系统特征。结果表明,汛期影响闽中沿海地区短时强降水的西风带天气系统主要有冷式切变型、静止锋切变型、西南气流型。三个类型强降雨的水汽均来自南海和北部湾,前期低层回暖是强降雨发生的重要条件。闽中沿海地区系统性的短时强降水多发于中东部地区;冷式切变型强降水分布相对较广,静止锋切变型强降水主要发生在闽侯中部、永泰东北部、莆田市区东北部和罗源东部,而西南气流型强降水集中于仙游西部和南部。三个类型强降水都集中于午后到上半夜,峰值都在18—19时之间,冷式切变型和静止锋切变型两种有冷空气活动的强降雨类型表现更为明显,这与两类强降雨日上午水汽通量散度为正值、午后转为负值有关;西南气流型8时和14时水汽通量散度均为负值,故此型上午就有一定比例的强降雨发生,午后发生率的增长也比较平缓。 相似文献
8.
利用蓟州区自动站逐小时观测资料和ERA5再分析资料对蓟州区短时强降水的时空发生规律和物理量进行了分析。结果表明:蓟州地区短时强降水发生的站次呈明显的阶段性变化;短时强降水天气主要出现在7~8月,其中7月中旬至8月上旬是高发期;短时强降水多出现在夜间凌晨左右;短时强降水的空间分布有明显的区域差异,呈北高南低的分布特征,平原地区短时强降水的发生也有明显的城郊差异;对流发生前,单站气压和湿度呈反向变化,而且这种变化在强降水发生前两三个小时内较明显,在预报蓟州短时强降水时有一定参考意义。 相似文献
9.
为了研究景德镇地区的强降水天气特征,找出强降水的时空分布特征和量级规律,并对2005-2015年景德镇强降水观测资料进行了普查与特征分析。结果表明:1)景德镇市短时强降水天气一般出现在4-9月份,7月最多;大致每年有8~9场,易发生在傍晚至上半夜时段,平均降水强度33.8 mm/h,最强达105.8 mm/h;2)超7成的短时强降水中会有超短时强降水,最强可达30 mm/10 min以上;3)短时强降水大多发生在系统性的暴雨过程中,有的在强雷暴过程中,往往伴有雷雨大风、冰雹等强对流天气;4)雷暴往往超前于强降水,并以西、西南、西北等方向为主;5)强降水过程中伴有气压涌升、风力加大,相对湿度上升,气温下降等明显特征。 相似文献
10.
《兰州大学学报(自然科学版)》2021,57(2):252-262
利用柴达木盆地气象台站逐日降水资料和国际卫星云气候学计划D2资料分析了柴达木盆地夏季极端强降水、云量及云水资源的时空分布特征,结合NCEP/NCAR再分析资料对夏季极端强降水事件发生时的大气环流进行了分析.结果表明,夏季极端降水阈值和极端降水日数在柴达木盆地东部大于西部,极端降水量也明显增加.柴达木盆地各种云量的空间分布形态不一,云量上升趋势不明显.云水路径、固态云水和液态云水的空间分布形态一致,具有"南低北高"的特征,三者的线性趋势在年和四季尺度均明显上升.环流分析显示,极端强降水事件发生时,对流层上层,西风急流向北移动,柴达木盆地位于急流南侧,有异常反气旋式环流,对应高空辐散区;对流层中层,柴达木盆地位于异常偏强的槽区及槽前;对流层低层,柴达木盆地东部位势高度异常偏低,出现异常气旋式环流,对应低空辐合,这种高层辐散低层辐合的环流配置为极端强降水提供了良好的动力条件.柴达木盆地极端强降水的水汽来源为印度夏季风对热带海洋的水汽经青藏高原东侧输送;西风带对欧亚大陆的水汽输送;西北太平洋异常气旋式环流西北侧的异常偏北风的水汽输送. 相似文献
11.
基于106个自动气象站的逐分钟雨量数据,对深圳短时强降水时空分布特征进行了分析。分析表明:①深圳的短时强降水多发生在西部沿海的宝安区、东部的大鹏新区山地,以及罗湖、福田和光明新区等地区的城市建成区;②东部短时强降水多发的原因可能与地形及季风有关,而中部和西部短时强降水多发的原因则可能与城市建成区的城市热岛效应及海陆热力差异有关;③年降水量与短时强降水频次没有一一对应的关系,有的年份即使年降水总量较小,短时强降水的频次仍然可能较多;④深圳市的短时强降水多发生在汛期(4~9月),其中以5~7月最为强盛。 相似文献
12.
利用海南岛2017—2021年440个加密地面观测站逐小时降水资料,采用线性统计等方法,分析了海南岛汛期(4—9月)短时强降水时空分布特征,结果表明,(1)海南岛汛期的短时强降水空间分布呈北多、南少特征,多发区集中在海南岛的北部地区,中部的琼中地区和东部的琼海地区次之,短时强降水的空间分布与海南岛夏季受海风锋影响以及秋季受偏东急流影响有关。(2)短时强降水年均站次为5865次,逐年站次在4862~6928站次之间波动,年际变化大,2018年和2021年出现了2个峰值,分别为6928次和6081次;短时强降水有明显的月变化规律,5月和8月短时强降水发生次数分别占汛期总次数的27%和28%,9月次之(占汛期总次数的16%);(3)海南岛汛期短时降水日变化特征和华南其他地区的双峰结构不一致,短时强降水的日变化具有明显的单峰结构,主要时间段为13∶00—19∶00。 相似文献
13.
珠江三角洲城市短时强降水概率分布模型的对比分析 总被引:1,自引:0,他引:1
采用GPD、GEV和Pearson-Ⅲ型3种概率分布模型,对比分析珠江三角洲18个城市短时强降水的概率分布,主要结论如下:1经AD、PPCC、RMSE和Q统计值拟合优度检验结果显示GPD模型普遍优于GEV和PIII型,反映超限量阈值法更适用于观测年限较短站点的极端水文气象事件的设计分位值推算;2花都、广州、新会、恩平、顺德、中山、珠海、深圳8个城市GPD模型的形态参数表明短时强降水出现概率高,且推算的设计降水大于GEV和P-III相应设计值;3参考相关"短时临近降雨强度等级划分"标准,珠江三角洲两年一遇短时强降水雨强即可达特大暴雨级别,是导致城市内涝的主要影响因子。 相似文献
14.
15.
利用云南省 125 个国家级自动气象站及 3 042 个区域站降水数据、FY-2E/G 云图数据以及探空观测数据,统计 2015—2019 年由切变线系统影响的云南短时强降水过程,对短时强降水时空分布、中尺度对流系统(Mesoscale Convective System, MCS)系统特征、MCS 系统发生发展的环境特征以及对流云系演变特征进行分析. 结果表明,云南切变线类短时强降水频次有 4 个大值中心,分别是云南南部边缘地区、曲靖南部至文山北部、华坪、德宏西部,傍晚至凌晨是强降水发生的主要时段;云南切变线类短时强降水对流云系分成新生对流云团、MαCS 和 MβCS 和带状 MCS 共 4 类,75% 的切变线类短时强降水是由 MαCS 和 MβCS 系统造成,MαCS 和 MβCS 系统中低于–32 ℃ 冷云区呈椭圆形,平均面积分别为 1.8 万 km~2、10.4 万 km~2,存在 1 个或 2 个中心,中心云顶亮温低于–52 ℃. M... 相似文献
16.
介绍了长治市2006年入夏以来的首次强降水天气,分析了本次降水过程,给出了此类强降水天气的预报着眼点。 相似文献
17.
介绍了短时局地暴雨的监测和左云县气象站点要素演变,对天气形势、加密观测资料和多普勒雷达资料进行了分析。 相似文献
18.
攀枝花及及坪采场发育有1#、2#2个滑坡,滑坡总量约27.5万m3,根据现场调查,滑坡体上变形明显,滑坡处于蠕滑状态.描述了滑坡的发育史和发育特征,还从地形地貌、地层岩性、人类工程活动及降雨等4个方面分析了引起滑坡变形失稳的成因机制,对相似的滑坡勘查具有借鉴意义. 相似文献
19.
2007年7月18日,南下的北方冷空气与北上的西南暖气流交汇,在济南市上空形成强对流云团,从而引发极端的强降雨过程,造成了严重的洪涝灾害,损失惨重.本文分别从暴雨特性、地形、水文等自然因素和治水思路、地面硬化、城市扩展等人为因素两个方面探讨了“7.18”严重洪涝灾害成因. 相似文献
20.
随着山区高速公路的建设,遇到了较多的堆积层老滑坡,由于路线穿越老滑坡的位置不同,所引起的病害性质、特征及成因均不相同。笔者就路线从滑坡前部、中部及后部不同位置穿越所引起的病害类型、性质及成因进行了分析,对类似病害的预防及治理具有一定的借鉴意义。 相似文献