首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agonist-bound receptors activate heterotrimeric (alpha beta gamma) G proteins by catalysing replacement by GTP of GDP bound to the alpha subunit, resulting in dissociation of alpha-GTP from the beta gamma subunits. In most cases, alpha-GTP carries the signal to effectors, as in hormonal stimulation and inhibition of adenylyl cyclase by alpha s and alpha i respectively. By contrast, genetic evidence in yeast and studies in mammalian cells suggest that beta gamma subunits of G proteins may also regulate effector pathways. Indeed, of the four recombinant mammalian adenylyl cyclases available for study, two, adenylyl cyclases II and IV, are stimulated by beta gamma. This effect of beta gamma requires costimulation by alpha s-GTP. This conditional pattern of effector responsiveness led to the prediction that receptors coupled to many G proteins will mediate elevation of cellular cyclic AMP, provided that Gs is also active. We now confirm this prediction. Coexpression of mutationally active alpha s with adenylyl cyclase II converted agonists that act through 'inhibitory' receptors (coupled to Gi) into stimulators of cAMP synthesis. Experiments using pertussis toxin and a putative scavenger of beta gamma, the alpha subunit of transducin, suggest that beta gamma subunits of the Gi proteins mediated this stimulation. These findings assign a new signalling function to beta gamma subunits of Gi proteins, the conditional stimulation of cAMP synthesis by adenylyl cyclase II.  相似文献   

2.
One of the biochemical results of ethanol exposure is a change in the amount of the intracellular second messenger cyclic AMP (cAMP) produced in response to receptor stimulation. In general, acute ethanol exposure increases the amount of cAMP produced on stimulation of receptors coupled to the enzyme adenylyl cyclase via the GTP-binding protein Gs, whereas chronic ethanol exposure has the opposite effect (results for receptors coupled via Gi have been more variable). We previously reported that adaptation to continuous ethanol exposure reduces receptor-stimulated cAMP production by 25-35% in a neuroblastoma cell line (NG108-15), and an even greater reduction of 75% was observed in lymphocytes taken from actively-drinking alcoholics. This reduction in receptor-stimulated cAMP levels was recently confirmed in platelets from alcoholics. None of these studies, however, determined whether more than one receptor coupled to adenylyl cyclase activity was affected in the same cell. Here we report that chronic ethanol exposure causes desensitization of heterologous receptors coupled to Gs as cAMP production mediated by prostaglandin E1 as well as by adenosine is reduced by approximately 30% in NG108-15 cells. We show that, after chronic ethanol exposure, the activity of the alpha subunit of Gs is decreased by 29%, the amount of alpha s protein is decreased by 38.5%, and alpha s messenger RNA is decreased by 30%. Thus, cellular adaptation to ethanol involves a reduction in alpha s mRNA and, as a consequence, reduced cAMP production by heterologous receptors coupled to Gs. Such changes in cAMP production may account for the tolerance and physical dependence on ethanol in alcoholism.  相似文献   

3.
Slep KC  Kercher MA  He W  Cowan CW  Wensel TG  Sigler PB 《Nature》2001,409(6823):1071-1077
A multitude of heptahelical receptors use heterotrimeric G proteins to transduce signals to specific effector target molecules. The G protein transducin, Gt, couples photon-activated rhodopsin with the effector cyclic GMP phosophodiesterase (PDE) in the vertebrate phototransduction cascade. The interactions of the Gt alpha-subunit (alpha(t)) with the inhibitory PDE gamma-subunit (PDEgamma) are central to effector activation, and also enhance visual recovery in cooperation with the GTPase-activating protein regulator of G-protein signalling (RGS)-9 (refs 1-3). Here we describe the crystal structure at 2.0 A of rod transducin alpha x GDP x AlF4- in complex with the effector molecule PDEgamma and the GTPase-activating protein RGS9. In addition, we present the independently solved crystal structures of the RGS9 RGS domain both alone and in complex with alpha(t/i1) x GDP x AlF4-. These structures reveal insights into effector activation, synergistic GTPase acceleration, RGS9 specificity and RGS activity. Effector binding to a nucleotide-dependent site on alpha(t) sequesters PDEgamma residues implicated in PDE inhibition, and potentiates recruitment of RGS9 for hydrolytic transition state stabilization and concomitant signal termination.  相似文献   

4.
A cyclic nucleotide-gated conductance in olfactory receptor cilia   总被引:25,自引:0,他引:25  
T Nakamura  G H Gold 《Nature》1987,325(6103):442-444
Olfactory transduction is thought to be initiated by the binding of odorants to specific receptor proteins in the cilia of olfactory receptor cells. The mechanism by which odorant binding could initiate membrane depolarization is unknown, but the recent discovery of an odorant-stimulated adenylate cyclase in purified olfactory cilia suggests that cyclic AMP may serve as an intracellular messenger for olfactory transduction. If so, then there might be a conductance in the ciliary plasma membrane which is controlled by cAMP. Here we report that excised patches of ciliary plasma membrane, obtained from dissociated receptor cells, contain a conductance which is gated directly by cAMP. This conductance resembles the cyclic GMP-gated conductance that mediates phototransduction in rod and cone outer segments, but differs in that it is activated by both cAMP and cGMP. Our data provide a mechanistic basis by which an odorant-stimulated increase in cyclic nucleotide concentration could lead to an increase in membrane conductance and therefore, to membrane depolarization. These data suggest a remarkable similarity between the mechanisms of olfactory and visual transduction and indicate considerable conservation of sensory transduction mechanisms.  相似文献   

5.
R S Dhallan  K W Yau  K A Schrader  R R Reed 《Nature》1990,347(6289):184-187
Odorant signal transduction occurs in the specialized cilia of the olfactory sensory neurons. Considerable biochemical evidence now indicates that this process could be mediated by a G protein-coupled cascade using cyclic AMP as an intracellular second messenger. A stimulatory G protein alpha subunit is expressed at high levels in olfactory neurons and is specifically enriched in the cilia, as is a novel form of adenylyl cyclase. This implies that the olfactory transduction cascade might involve unique molecular components. Electrophysiological studies have identified a cyclic nucleotide-activated ion channel in olfactory cilia. These observations provide evidence for a model in which odorants increase intracellular cAMP concentration, which in turn activates this channel and depolarizes the sensory neuron. An analogous cascade regulating a cGMP-gated channel mediates visual transduction in photoreceptor cells. The formal similarities between olfactory and visual transduction suggest that the two systems might use homologous channels. Here we report the molecular cloning, functional expression and characterization of a channel that is likely to mediate olfactory transduction.  相似文献   

6.
Gamma-aminobutyric acid (GABA)B receptors couple to Go to inhibit N-type calcium channels in embryonic chick dorsal root ganglion neurons. The voltage-independent inhibition, mediated by means of a tyrosine-kinase pathway, is transient and lasts up to 100 seconds. Inhibition of endogenous RGS12, a member of the family of regulators of G-protein signalling, selectively alters the time course of voltage-independent inhibition. The RGS12 protein, in addition to the RGS domain, contains PDZ and PTB domains. Fusion proteins containing the PTB domain of RGS12 alter the rate of termination of the GABA(B) signal, whereas the PDZ or RGS domains of RGS 12 have no observable effects. Using primary dorsal root ganglion neurons in culture, here we show an endogenous agonist-induced tyrosine-kinase-dependent complex of RGS12 and the calcium channel. These results indicate that RGS12 is a multifunctional protein capable of direct interactions through its PTB domain with the tyrosine-phosphorylated calcium channel. Recruitment of RGS proteins to G-protein effectors may represent an additional mechanism for signal termination in G-protein-coupled pathways.  相似文献   

7.
Mutant alpha subunits of Gi2 inhibit cyclic AMP accumulation   总被引:16,自引:0,他引:16  
One or more of three Gi proteins, Gi1-3, mediates hormonal inhibition of adenylyl cyclase. Whether this inhibition is mediated by the alpha or by the beta gamma subunits of Gi proteins is unclear. Mutations inhibiting the intrinsic GTPase activity of another G protein, the stimulatory regulator of adenylyl cyclase (Gs), constitutively activate it by replacing either of two conserved amino acids in its alpha subunit (alpha s). These mutations create the gsp oncogene which is found in human pituitary and thyroid tumours. In a second group of human endocrine tumours, somatic mutations in the alpha subunit of Gi2 replace a residue cognate to one of those affected by gsp mutations. This implies that the mutations convert the alpha i2 gene into a dominantly acting oncogene, called gip2, and that the mutant alpha i2 subunits are constitutively active. We have therefore assessed cyclic AMP accumulation in cultured cells which stably or transiently express exogenous wild-type alpha i2 complementary DNA or either of two mutant alpha i2 cDNAs. The results show that putatively oncogenic mutations in alpha i2 constitutively activate the protein's ability to inhibit cAMP accumulation.  相似文献   

8.
Muscarinic acetylcholine receptors (mAChRs), like many other neurotransmitter and hormone receptors, transduce agonist signals by activating G proteins to regulate ion channel activity and the generation of second messengers via the phosphoinositide (PI) and adenylyl cyclase systems. Human mAChRs are a family of at least four gene products which have distinct primary structures, ligand-binding properties and patterns of tissue-specific expression. To examine the question of whether functional differences exist between multiple receptor subtypes, we have investigated the ability of each subtype to regulate PI hydrolysis and adenylyl cyclase when expressed individually in a cell lacking endogenous mAChRs. We show that the HM2 and HM3 mAChRs efficiently inhibit adenylyl cyclase activity but poorly activate PI hydrolysis. In contrast, the HM1 and HM4 mAChRs strongly activate PI hydrolysis, but do not inhibit adenylyl cyclase, and in fact can substantially elevate cAMP levels. Interestingly, the subtypes that we find to be functionally similar are also more similar in sequence. Our results indicate that the different receptor subtypes are functionally specialized.  相似文献   

9.
Odorant-sensitive adenylate cyclase may mediate olfactory reception   总被引:8,自引:0,他引:8  
U Pace  E Hanski  Y Salomon  D Lancet 《Nature》1985,316(6025):255-258
The mechanism of the sense of smell has long been a subject for theory and speculation. More recently, the notion of odorant recognition by stereospecific protein receptors has gained wide acceptance, but the receptor molecules remained elusive. The recognition molecules are believed to be quite diverse, which would partly explain the unusual difficulties encountered in their isolation by conventional ligand-binding techniques. An alternative approach would be to probe the receptors through transductory components that may be common to all receptor types. Here we report the identification of one such transductory molecular component. This is an odorant-sensitive adenylate cyclase, present in very large concentrations in isolated dendritic membranes of olfactory sensory neurones. Odorant activation of the enzyme is ligand and tissue specific, and occurs only in the presence of GTP, suggesting the involvement of receptor(s) coupled to a guanine nucleotide binding protein (G-protein). The olfactory G-protein is independently identified by labelling with bacterial toxins, and found to be similar to stimulatory G-proteins in other systems. Our results suggest a role for cyclic nucleotides in olfactory transduction, and point to a molecular analogy between olfaction and visual, hormone and neurotransmitter reception. Most importantly, the present findings reveal new ways to identify and isolate olfactory receptor proteins.  相似文献   

10.
G蛋白信号转导调节因子(Regulator of Gprotein signaling,RGS)是G蛋白的信号转导系统的负性调节因子,大部分RGS蛋白通过GTP酶激活蛋白方式发挥作用.本文概述了G蛋白信号转导调节因子的结构、功能、意义及国际最新的研究趋势.对RGS的深入研究有利于对信号转导调节的了解.  相似文献   

11.
P Illes  J T Regenold 《Nature》1990,344(6261):62-63
Despite their widespread occurrence in the central nervous system, interactions between co-localized transmitters and their receptors remain poorly understood. Noradrenergic neurons of the nucleus locus coeruleus contain the peptide co-transmitter neuropeptide Y (refs 1,2). In locus coeruleus cells, stimulation of alpha2-adrenoceptors 3,4 or opioid mu-receptors 5,6 increases a potassium conductance and thereby leads to hyperpolarization and inhibition of spontaneous firing. Coupling between these receptors and the inward rectifying K+ channels involves a pertussis toxin-sensitive GTP-binding protein (Gi or Go)7. Here we investigate whether the neuropeptide Y and alpha2-receptors of locus coeruleus neurons interact with one another. When administered alone, neuropeptide Y reduces the discharge of action potentials, probably by increasing the permeability of the membrane to potassium ions through the activation of a G protein; this effect is reduced in the presence of alpha2-adrenoceptor antagonists. Moreover, the peptide selectively increases the hyperpolarizing effect of alpha2-agonists, but does not enhance responses to opioid mu-agonists. We suggest that noradrenaline and its co-transmitter neuropeptide Y stimulate separate receptors, which influence each other in a specific way.  相似文献   

12.
Multiple D2 dopamine receptors produced by alternative RNA splicing   总被引:16,自引:0,他引:16  
Dopamine receptor belong to a large class of neurotransmitter and hormone receptors that are linked to their signal transduction pathways through guanine nucleotide binding regulatory proteins (G proteins). Pharmacological, biochemical and physiological criteria have been used to define two subcategories of dopamine receptors referred to as D1 and D2. D1 receptors activate adenylyl cyclase and are coupled with the Gs regulatory protein. By contrast, activation of D2 receptors results in various responses including inhibition of adenylyl cyclase, inhibition of phosphatidylinositol turnover, increase in K+ channel activity and inhibition of Ca2+ mobilization. The G protein(s) linking the D2 receptors to these responses have not been identified, although D2 receptors have been shown to both copurify and functionally reconstitute with both Gi and Go related proteins. The diversity of responses elicited by D2-receptor activation could reflect the existence of multiple D2 receptor subtypes, the identification of which is facilitated by the recent cloning of a complementary DNA encoding a rat D2 receptor. This receptor exhibits considerable amino-acid homology with other members of the G protein-coupled receptor superfamily. Here we report the identification and cloning of a cDNA encoding an RNA splice variant of the rat D2 receptor cDNA. This cDNA codes for a receptor isoform which is predominantly expressed in the brain and contains an additional 29 amino acids in the third cytoplasmic loop, a region believed to be involved in G protein coupling.  相似文献   

13.
A Katz  D Wu  M I Simon 《Nature》1992,360(6405):686-689
The activation of heterotrimeric G proteins results in the exchange of GDP bound to the alpha-subunit for GTP and the subsequent dissociation of a complex of the beta- and gamma-subunits (G beta gamma). The alpha-subunits of different G proteins interact with a variety of effectors, but less is known about the function of the free G beta gamma complex. G beta gamma has been implicated in the activation of a cardiac potassium channel, a retinal phospholipase A2 (ref. 9) and a specific receptor kinase, and in vitro reconstitution experiments indicate that the G beta gamma complex can act with G alpha subunit to modulate the activity of different isoforms of adenylyl cyclase. Of two phospholipase activities that can be separated in extracts of HL-60 cells, purified G beta gamma is found to activate one of them. Here we report that in co-transfection assays G beta gamma subunits specifically activate the beta 2 and not the beta 1 isoform of phospholipase, which acts on phosphatidylinositol. We use transfection assays to show also that receptor-mediated release of G beta gamma from G proteins that are sensitive to pertussis toxin can result in activation of the phospholipase. This effect may be the basis of the pertussis-toxin-sensitive phospholipase C activation seen in some cell systems (reviewed in refs 13 and 14).  相似文献   

14.
Signal transduction by G-protein-coupled receptors is regulated by various mechanisms acting at the receptor level; those studied most thoroughly are from the beta-adrenergic receptor/Gs/adenylyl cyclase system. We report here a regulatory mechanism occurring at the level of the G proteins themselves. A protein with M(r) 33,000 that inhibits Gs-GTPase activity was purified from bovine brain. This protein is very similar or identical to phosducin, a protein previously thought to be specific for retina and pineal gland. Recombinant phosducin inhibited the GTPase activity of several G proteins, and also inhibited Gs-mediated adenylyl cyclase activation. Blockade of its inhibitory effects by protein kinase A suggests that phosducin may be part of a complex regulatory network controlling G-protein-mediated signalling.  相似文献   

15.
Neurotransmitter can modulate neuronal activity through a variety of second messengers that act on ion channels and other substrate proteins. The most commonly described effector mechanism for second messengers in neurons depends on protein phosphorylation mediated by one of three sets of kinases: the cyclic AMP-dependent protein kinases, the Ca2+-calmodulin-dependent protein kinases, and the Ca2+-phospholipid-dependent protein kinases. In addition, some neurotransmitters and second messengers can also inhibit protein phosphorylation by lowering cAMP levels (either by inhibiting adenylyl cyclase or activating phosphodiesterases). This raises the question: can neurotransmitters also modulate neuronal activity by decreasing protein phosphorylation that is independent of cAMP? Various biochemical experiments show that a decrease in protein phosphorylation can arise through activation of a phosphatase or inhibition of kinases. In none of these cases, however, is the physiological role for the decrease in protein phosphorylation known. Here we report that in Aplysia sensory neurons, the presynaptic inhibitory transmitter FMRFamide decreases the resting levels of protein phosphorylation without altering the level of cAMP. Furthermore, FMRFamide overrides the cAMP-mediated enhancement of transmitter release produced by 5-hydroxytryptamine (5-HT), and concomitantly reverses the cAMP-dependent increase in protein phosphorylation produced by 5-HT. These findings indicate that a receptor-mediated decrease in protein phosphorylation may play an important part in the modulation of neurotransmitter release.  相似文献   

16.
Odorant signal termination by olfactory UDP glucuronosyl transferase   总被引:8,自引:0,他引:8  
D Lazard  K Zupko  Y Poria  P Nef  J Lazarovits  S Horn  M Khen  D Lancet 《Nature》1991,349(6312):790-793
The onset of olfactory transduction has been extensively studied, but considerably less is known about the molecular basis of olfactory signal termination. It has been suggested that the highly active cytochrome P450 monooxygenases of olfactory neuroepithelium are termination enzymes, a notion supported by the identification and molecular cloning of olfactory-specific cytochrome P450s (refs. 13-16). But as reactions catalysed by cytochrome P450 (refs 17, 18) often do not significantly alter volatility, lipophilicity or odour properties, cytochrome P450 may not be solely responsible for olfactory signal termination. In liver and other tissues, drug hydroxylation by cytochrome P450 is frequently followed by phase II biotransformation, for example by UDP glucuronosyl transferase (UGT), resulting in a major change of solubility and chemical properties. We report here the molecular cloning and expression of an olfactory-specific UGT. The olfactory enzyme, but not the one in liver microsomes, shows preference for odorants over standard UGT substrates. Furthermore, glucuronic acid conjugation abolishes the ability of odorants to stimulate olfactory adenylyl cyclase. This, together with the known broad spectrum of drug-detoxification enzymes, supports a role for olfactory UGT in terminating diverse odorant signals.  相似文献   

17.
G protein-coupled receptors represent the largest family of membrane receptors that instigate signalling through nucleotide exchange on heterotrimeric G proteins. Nucleotide exchange, or more precisely, GDP dissociation from the G protein α-subunit, is the key step towards G protein activation and initiation of downstream signalling cascades. Despite a wealth of biochemical and biophysical studies on inactive and active conformations of several heterotrimeric G proteins, the molecular underpinnings of G protein activation remain elusive. To characterize this mechanism, we applied peptide amide hydrogen-deuterium exchange mass spectrometry to probe changes in the structure of the heterotrimeric bovine G protein, Gs (the stimulatory G protein for adenylyl cyclase) on formation of a complex with agonist-bound human β(2) adrenergic receptor (β(2)AR). Here we report structural links between the receptor-binding surface and the nucleotide-binding pocket of Gs that undergo higher levels of hydrogen-deuterium exchange than would be predicted from the crystal structure of the β(2)AR-Gs complex. Together with X-ray crystallographic and electron microscopic data of the β(2)AR-Gs complex (from refs 2, 3), we provide a rationale for a mechanism of nucleotide exchange, whereby the receptor perturbs the structure of the amino-terminal region of the α-subunit of Gs and consequently alters the 'P-loop' that binds the β-phosphate in GDP. As with the Ras family of small-molecular-weight G proteins, P-loop stabilization and β-phosphate coordination are key determinants of GDP (and GTP) binding affinity.  相似文献   

18.
Mice use pheromones, compounds emitted and detected by members of the same species, as cues to regulate social behaviours such as pup suckling, aggression and mating. Neurons that detect pheromones are thought to reside in at least two separate organs within the nasal cavity: the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Each pheromone ligand is thought to activate a dedicated subset of these sensory neurons. However, the nature of the pheromone cues and the identity of the responding neurons that regulate specific social behaviours are largely unknown. Here we show, by direct activation of sensory neurons and analysis of behaviour, that at least two chemically distinct ligands are sufficient to promote male-male aggression and stimulate VNO neurons. We have purified and analysed one of these classes of ligand and found its specific aggression-promoting activity to be dependent on the presence of the protein component of the major urinary protein (MUP) complex, which is known to comprise specialized lipocalin proteins bound to small organic molecules. Using calcium imaging of dissociated vomeronasal neurons (VNs), we have determined that the MUP protein activates a sensory neuron subfamily characterized by the expression of the G-protein Galpha(o) subunit (also known as Gnao) and Vmn2r putative pheromone receptors (V2Rs). Genomic analysis indicates species-specific co-expansions of MUPs and V2Rs, as would be expected among pheromone-signalling components. Finally, we show that the aggressive behaviour induced by the MUPs occurs exclusively through VNO neuronal circuits. Our results substantiate the idea of MUP proteins as pheromone ligands that mediate male-male aggression through the accessory olfactory neural pathway.  相似文献   

19.
From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca(2+) concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.  相似文献   

20.
C A Landis  S B Masters  A Spada  A M Pace  H R Bourne  L Vallar 《Nature》1989,340(6236):692-696
A subset of growth hormone-secreting human pituitary tumours carries somatic mutations that inhibit GTPase activity of a G protein alpha chain, alpha(s). The resulting activation of adenylyl cyclase bypasses the cells' normal requirement for trophic hormone. Amino acids substituted in the putative gsp oncogene identify a domain of G protein alpha-chains required for intrinsic ability to hydrolyse GTP. This domain may serve as a built-in counter-part of the separate GTPase-activating proteins required for GTP hydrolysis by small GTP-binding proteins such as p21ras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号