共查询到19条相似文献,搜索用时 133 毫秒
1.
2.
针对现有体育视频分类方法中采用单个特征或简单组合无法提高分类精确度问题,提出一种颜色和纹理非线性融合的特征提取方法,并进一步设计基于SVM的分类器.主要工作包括:颜色空间转换、颜色索引矩阵定义、颜色共生矩阵定义、颜色纹理提取和多分类算法设计.实验结果表明非线性融合方法比单颜色、单纹理或颜色和纹理的简单融合在体育视频分类上具有更好的类别区分度,分类精确度平均分别提高了9.94%,8.66%,6.90%. 相似文献
3.
人脸在视频节目中代表了重要语义信息 ,提出使用支持向量机和隐马尔可夫链混合模型对人脸进行识别 ,然后把识别结果进行高斯聚类 ,实现视频节目的内容标注 .具体步骤如下 :首先建立人脸肤色模型 ,对视频图像中可能的人脸区域进行定位 ;从定位区域提取人脸各个器官的独立基特征 ,然后使用支持向量机和隐马尔可夫链混合模型对定位区域进行人脸识别 ,最后由高斯聚类完成视频节目的语义标注 相似文献
4.
5.
利用可穿戴式加速度传感器采集手势动作信息,研究了基于隐马尔可夫模型的手势识别技术.首先采集手势加速度数据,采用改进的SWAB算法进行自动端点检测,通过提取相应的手势特征,利用HMM对手势指令建模,并采用K-means算法矢量量化手势特征序列,以提高手势识别性能.实验表明,本文采用的方法能够有效识别手势动作. 相似文献
6.
利用错误驱动法、支持向量机法和隐马尔可模型3种方法对汉语文本进行名词短语识别,对实验进行比较分析,结果表明SVM与HMM的识别效果总体上要好于错误驱动法,HMM法在封闭测试中优势明显.研究表明错误驱动法适用于解决从语料库中学习转换规则的传统问题;SVM方法适用于解决两类别的分类问题;而HMM方法侧重应用在与线性序列相关的现象上. 相似文献
7.
基于自评估HMM的离心泵状态识别方法研究 总被引:1,自引:0,他引:1
由于HMM本身的特点,在实际应用中如何找到一个合适的HMM模型始终是一个难点.采用传统的Baum-W elch算法对HMM进行训练,并提出了一种对训练结果进行评估的方法,构建了可自动评估的HMM训练体系. 相似文献
8.
为弥补特征提取中的语义缺陷,提出了一种利用领域知识规则填补特征与高级语义之间鸿沟的思想,从体育视频中对语义对象进行有效的特征提取,并采用支持向量机元分类器和组合策略对体育视频进行分类的方法.实验表明,该分类方法对大部分体育视频都具有很好的分类效果,平均准确率可达92.23%,优于其他提取特征无语义关联的分类方法. 相似文献
9.
森林背景下,有效的烟雾检测在避免大规模森林火灾方面具有极其重要的意义。当前的研究对烟雾移动得很慢或没有清晰背景的情况下往往表现较差的性能,提出一种针对烟雾检测的自适应区域生长法。采用改进的卡尔曼滤波检测出运动区域,假设烟雾的亮度与视频照度之间存在线性关系,采用支持向量机(support vector ma-chine,SVM)线性回归方法得到烟雾亮度的近似范围,并定义亮度约束,基于检测得到的运动区域,同时考虑亮度约束和纹理约束,蔓延出烟雾区域的主要部分,提取基于区域的特征来做 SVM分类。对比实验结果表明,该方法优于传统的方法,并具有更强的鲁棒性。 相似文献
10.
基于主动学习SVM分类器的视频分类 总被引:4,自引:0,他引:4
提出一种基于主动学习SVM分类器的视频分类算法.该算法分为两个步骤:首先分析并提取与视频类型有关的十维底层视觉特征;然后用SVM分类器建立这些底层特征与视频类型之间的联系.在获取SVM分类器所需的训练样本时,采用主动学习的方法选择对SVM分类器最"有用"的样本提供给用户进行标注,用更少的训练样本获得与大量训练样本近似的分类效果,从而减轻用户标注负担.针对多类SVM分类的主动学习问题,提出用后验概率计算分类器对未标注样本的置信度进行样本选择.实验结果表明,主动学习算法与随机采样标注的被动学习算法相比,在相同的训练样本情况下能够获得更高的分类精度;而基于后验概率选择样本的主动学习要略好于传统的基于变型空间(version space)选择样本的主动学习. 相似文献
11.
基于特征和HMM的信息提取 总被引:1,自引:0,他引:1
为了解决在信息提取中,召回率和精度都不高的问题,提出了改进的HMM(Hidden Markov Models)模型,该模型采用一种新的文本分块技术。通过文本的语义特征和结构特征,抽取具有特征的状态,并在此基础上,抽取剩余的无特征的状态改进HMM,测试了由卡耐基梅隆大学数据搜索引擎研究小组所提供的100篇计算机科学文件头部。结果表明,与基于字词和传统的HMM方法相比,召回率和精确率分别达到了91.99%和94.79%。 相似文献
12.
为实现软件的自适应,针对复杂多变的运行环境,提出一个基于隐Markov模型(HMM)的自适应软件决策模型.首先运用高斯混合模型(GMM)对初始环境进行分类,然后使用softmax回归对感知环境进行归类划分处理,最后利用HMM代替人工干预进行软件决策.实验结果表明,该自适应软件模型在感知环境发生变化的条件下,能很好地实现软件自适应决策. 相似文献
13.
噪声环境中基于HMM模型的语音信号端点检测方法 总被引:8,自引:1,他引:8
在噪声环境下如何提高语音信号端点检测的准确性是自动语音识别(ASR)研究中的一个重要课题.常用的基于短时能量的端点检测方法对于能量较低的音节或在信噪比较低的环境下,检测性能不够理想.讨论了一种基于HMM模型的语音信号端点检测方法.先用训练的方法生成背景噪声和废料的模型,再用Viterbi解码算法对待测信号进行处理,并给出了具体的实现方法.实验测试结果表明,基于HMM的端点检测方法的检测性能接近于人工检测,方法是有效的. 相似文献
14.
一种基于隐马尔可夫模型的在线手写签名认证算法 总被引:1,自引:0,他引:1
给出一种对签名特殊点的提取方法, 并以此特殊点作为签名的分割点, 获取每段中的重要特征进行分析. 在此基础上, 提出一种基于隐马尔可夫模型(HMM)的在线手写签名认证算法, 并利用第一届国际手写签名认证竞赛(SVC 2004)的测试数据库检验了算法的有效性. 相似文献
15.
本文提出并实现了一种结合颜色和SIFT特征的视频目标检索方法。首先,利用图像颜色直方图特征对目标图像进行初步检索和排序;然后对检索结果中与目标图像相似度较高的图像进行SIFT特征提取,并与目标图像中截取的目标区域子图的SIFT特征进行匹配;最后根据SIFT特征匹配结果对初步检索图像再进行二次排序,并反馈目标位置和偏移信息。仿真实验结果表明本文提出的基于颜色和SIFT特征的视频目标检索方法对目标亮度、位置平移、缩放、形态变化等有较好的适应性,能准确检索出目标,具有较高的实用性。 相似文献
16.
基于HMM与神经网络的声学模型研究 总被引:6,自引:0,他引:6
神经网络能依靠权值进行长时间记忆和知识存储,但是对输入模式的瞬时相应的记忆能力比较差;而隐马尔科夫模型的短时记忆的能力比较强,但是假定的前提又与实际情况不符.因此,采用HMM和ANN的混合模型来取双方之长,并在这种混合模型的基础上,对神经网络从结构设计、训练、到训练后期的结构调整进行了全程的优化;应用隐节点剪枝算法,并利用广义的Hebb规则重新确定网络的参数.实验表明,这种混合模型在语音识别中取得了良好的效果. 相似文献
17.
为了准确地对人的身份进行识别,利用图像中脉络延伸方向与脉络间位置的相互联系,将隐马尔科夫模型(HMM)应用于识别系统中,提出了一种基于遗传算法自适应建立HMM的静脉识别算法.图像经预处理后得到静脉的骨架信息,将细化后的静脉图像进行Radon变换,每一静脉对象可表示为一个HMM;对于已知确定的训练样本库,利用遗传算法自适应调整HMM参数,使所有测试图像的观测序列在真实匹配模型中发生的概率值远远大于其在虚假匹配模型中发生的概率值,提高了不同静脉对象的区分度.实验表明,该算法具有较高的正确识别率,并具有良好的实时性. 相似文献
18.
曹玉东 《重庆邮电大学学报(自然科学版)》2008,20(2):236-240
MDI为HMM训练的优化准则之一,但传统的MDI是基于局部最优求解的,所得的解也是一个局部最优解,而进化计算则是基于全局搜索的。为此,提出了将MDI及进化计算相结合来训练HMM的方法。各个模型用个体来表示,个体的适应值采用模型的最小差别信息。实验结果表明,该方法所得的系统识别率高于传统的方法。 相似文献
19.
基于直方图差分的视频分类方法 总被引:1,自引:0,他引:1
针对当前视频自动分类算法复杂计算量大等问题,提出一种简单的自动视频分类方法,即基于直方图差分的统计方法。获得每个视频的直方图差分曲线后,调整去掉编辑特效造成的虚假峰,得到每个视频的每秒平均镜头切换次数,以此作为广告视频和非广告视频的分类依据,进行C-均值聚类。实验结果表明,该方法以较少的工作量获得了较好的分类结果。 相似文献